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يفاتاتسوربلاناطرسببستينأعقوتملانم،2030ماعلولحب:ثحبلافادهأ
جذومنءاشنإيهثحبلااذهفادهأ.ةافوةلاحفلأ499وةديدجةلاحنويلم1.7
طخدضناطرسللداضملماعكلودنإ-نوزابراكيميسويثتافرصتنيبطبري
،فدهتسملاميزنلإاوتابكرملانيبماحتللااليلحتءارجإو،3يسيبايلاخ
.قيقحتلاديقتابكرملليئاودلاهباشتلاوةيئاودلاةيكرحلابؤبنتلاو

ءانبلطاشنلاوةينبلانيبةيمكلاةقلاعلاةقيرطلاتمدختسا:ثحبلاةقيرط
تصحفو،فدهتسملاميزنلإاوتابكرملانيبيئيزجلاماحتللااترجأو،جذومنلا
.ةطبثملاتابكرمللةيئاودلاكئارحلاليلحتوةيودلأاعماههباشت

ةينيجلاةفيظولاةيمزراوخلطوطخلاددعتمرادحنلااجهنممادختسامت:جئاتنلا
جذومننمةيلاتلاتاملعملا.طاشنلاويمكلالكيهلانيبةقلاعلاجذومنءانبيف
لدعملا("جدار"،0.972517¼)ديدحتلالماعم(2رآ،لضفأك،لولأاءانبلا
"فإوألإ"و،0,780922¼"2يبرآيس"،0.964665¼)يعيبرتلا-رآ
ىلعةوقبرهظ،0.076524¼)ةدحاوةرملعطاقتلاةحصنمققحتلا(
ياج"و"3شتإيسسإسإ"و"يديبشتإسإ"تناك.ةيئيزجلاتافصاولا
عتمتت.يرثاكتلاطاشنلاىلعريبكلكشبدمتعت"يب60فإيدرأ"و"2يآيج
تلابقتسملتاطبثمكلمعلاىلعةردقلاب22و7نيفرعملاتاذتابكرملا
تاميزنلإاوةيودلأانيبيئيزجلاماحتللااتاساردتحرتقاامك،نيجوردنلأا
غلبتطبرتاجردقيقحتلاديق22و7نيفرعملاتاذتابكرملارهظت.ةفدهتسملا
تناك.يلاوتلاىلع،لوم/ةيرارحةرعس8.8-ولوم/ةيرارحةرعس8.5-
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Abstract

Objectives: By 2030, prostate cancer is estimated to ac-

count for 1.7 million new cases and 499,000 deaths. The

objectives of this research were to create a model

revealing the activity of thiosemicarbazone-indole com-

pounds as anticancer agents against the PC3 cell line;

perform docking analysis between the compounds and

the target enzyme; and predict the pharmacokinetics and

drug-likeness of the compounds under investigation.

Methods: The quantitative structureactivity relationship

(QSAR) method was used to build the model; molecular

docking between the compounds and the target enzyme

was performed; and the drug-likeness and pharmacoki-

netics of the inhibiting compounds was examined.

Results: The genetic function algorithm-multilinear

regression approach was used for building the QSAR

model. Build model 1 had the best performance, with R2

(coefficient of determination) ¼ 0.972517, Radj (adjusted

R-squared) ¼ 0.964665, (CRp2) ¼ 0.780922, and LOF
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(leave-one-out cross-validation) ¼ 0.076524, demon-

strated strongly indicated by the molecular descriptors.

SHBd, SsCH3, JGI2, and RDF60P were highly depen-

dent on proliferative activity. Compounds ID 7 and 22

had the potential to act as androgen receptor inhibitors,

as suggested by molecular docking studies between the

drugs and their target enzymes. Compounds ID 7 and 22

exhibited binding scores of �8.5 kcal/mol and �8.8 kcal/

mol, respectively. The approved maximum medication

molecules for oral bioavailability included the molecules

with IDs 7 and 22.

Conclusion: This research provides valuable insights into

the relationships among molecular descriptors, potential

inhibitors, and pharmacokinetic properties in the treat-

ment of PC3. These findings may contribute to the un-

derstanding and potential development of new

therapeutic options for prostate cancer patients.

Keywords: In silico; Molecular docking; (PC3) cell line;

Pharmacokinetics; Prostate cancer; QSAR

� 2024 The Authors. Published by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The continuing emergence of novel diseases, coupled with
the diminishing effectiveness of existing treatments, un-

derscores the urgent need for innovative solutions. This need
for new treatments has led to increased exploration of diverse
resources, particularly plants and microorganisms.1,2 The

conventional trial-and-error approach to drug design is
costly, environmentally disruptive, and time-consuming.3

Consequently, computational and theoretical chemistry
methods, such as quantitative structureeactivity relation-

ship (QSAR) and structureeactivity relationship, have sub-
stantially advanced the understanding of metabolism of new
drugs in early development stages.4

One groundbreaking advancement in drug design has
been the development of computational chemistry and mo-
lecular modeling approaches. These tools have become

indispensable for the discovery, optimization, and design of
novel drug candidates.4,5 According to GLOBOCAN (2018),
1,276,106 new cases of prostate cancer were recorded

worldwide. This cancer is more common in developed
countries, which have shown a death rate of 358,989. With
increases in the global population, prostate cancer is
expected to reach 1.7 million new cases and 499,000 deaths

by the year 2030.6e8 Current therapies such as
chemotherapy, radiation therapy, and surgery have become
ineffective because of severe adverse effects and multidrug

resistance.9 Despite the abundance of medications on the
market, their clinical effectiveness remains insufficient.10

Therefore, this chronic illness is considered a major issue

requiring prompt pharmaceutical treatment.11
Nature is the primary source of several cures for various
illness.12 In this context, the present study focused on the

exploration of thiosemicarbazone derivatives, which exhibit
promising biological activity.13 These compounds are rich
in sulfur and nitrogen, and have diverse biological and

therapeutic properties.14 Notably, thiosemicarbazones have
gained attention for their anticancer potential, thus
prompting computational investigations into their

pharmacological activity.15

Thiosemicarbazones have demonstrated remarkable po-
tential in medicinal chemistry, in applications including
pharmaceutical, bacterial, and material synthesis.15 Their

ability to bind transition metals has prompted interest in
catalysis and medicinal applications.16,17 The compounds
are recognized for their antiproliferative effects and are

considered potential candidates for anticancer drugs.18e20

Given their demonstrated biological activity, including
antituberculosis, antiviral, antifungal, antimalarial, and,

notably, antineoplastic actions, thiosemicarbazones have
become pharmacophores of interest to chemists and
biologists.18,21e25 Several derivatives, including
thiosemicarbazone and its derivatives, are currently

undergoing investigation in phase I and phase II clinical
trials against various cancers.26e28 The search for potent
and safer anticancer compounds remains a critical focus of

contemporary cancer research.29

Indole scaffolds are known to avert the multiplication and
invasion of many cancer cells.30 Moreover, indole derivatives,

because of their pharmacological attributes, have emerged as
a promising research field and have piqued the interest of
researchers.31e33 These derivatives are widely used as

synthons for the preparation of a wide variety of
biologically important heterocycles.34 Additionally, indole is
present in important synthetic therapeutic compounds such
as anti-HIV35 and anti-cancer36 drugs.

In prostate cancer research, the PC3 cell line is particu-
larly prominent among the three commonly used prostate
cancer cell lines, PC3, DU145, and LNCaP. Therefore,

investigating the activity of thiosemicarbazone derivatives
against PC3 prostate cancer cell lines is of substantial
relevance.

To facilitate drug candidate discovery, a systematic and
robust approach is essential. This study used QSAR and
molecular docking techniques to predict the activity of thi-

osemicarbazone derivatives against PC3 prostate cancer cell
lines. Our aim was to unravel the intricate relationship be-
tween these compounds and their receptor, to gain a deeper
understanding of their mechanism of action.

Materials and Methods

Sourcing of data

A series of thiosemicarbazone-indole derivatives with
antiproliferative activity (IC50) against the PC3 cancer cell
line were identified from the literature.37 Antiproliferative

activity (IC50), measured in micromolar concentrations
(m), was transformed to a logarithmic scale (pIC50), and

http://creativecommons.org/licenses/by-nc-nd/4.0/
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the negative base 10 logarithm of all compounds was
determined with equation (1).

pIC50 ¼ �log10 (IC50 � 10�6) (1)

Drawing of 2D-molecular structures and geometric
optimization

ChemDraw v12.0 software was used to draw the 2D

structures of all molecules in the data set. The 2D structures
of all molecules were converted to 3D in Spartan 14.1.1.0v
software. Energy minimization was performed to decrease

structural constraints before the stable conformation of the
molecules in terms of possible energy was determined.38 The
Bee-3-Lee Yang per method of optimization, with density

functional theory calculations in the 6-31G* Basic set in
Spartan 14.1.1.0v software, were employed to ascertain the
connections’ geometrical structure. Spartan 14.1.1.0v soft-
ware was used to perform optimization aimed at positioning

the stable structures of all molecules at the universal mini-
mum on the potential energy surface.38

Model development and validation

The generated model was evaluated with Friedman’s
formula,39 as follows:

LOF ¼ SEE

ð1ecþdPÞ2
M

(2)

where Friedman lack of fit (LOF) is the estimated robustness

of a model, SEE is the standard error of estimation, P is the
total number of descriptions in the model, d is the user-
defined smoothing parameter, C is the number of terms in

the model, and M is the number of compounds in the
training set.

SEE was determined as follows:

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Yexp � Yprd

�q

N� P� 1
(3)

where Yexp, Ypred are the verified and calculated pIC50 values
of the modeling set samples, N is the number of samples in
the modeling data set, and P is the number of independent
variables present in the generated model.40

The correlation coefficient R2 of the build model was
another parameter considered; values closer to 1.0 indicated
a better built model. R2 is represented as:

R2 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ʃ
�
Yexp � Yprd

�2q

Ʃ
�
Yexp � Ytrn

�2 (4)

where Yprd, Yexp, and Ytrn are the predicted, experimental,

and average experimental activity in the training set,
respectively.

The strength of the model did not depend on the value of

R2, because the value of R2 was directly proportional to the
number of descriptors in the model. Therefore, for an
authentic and robust model, R2 was modified accordingly.
R2
adj ¼

ðn� 1Þ �R2� P
�

n� P� 1
(5)

where P is the number of descriptors in the model, and n is

the number of compounds used in the training set. The cross-
validation coefficient, Q2

cv was as follows:

Q2
cv ¼ 1�

P�
Yprd e Yexp

�2
P�

Yexp e Ymtrn

�2 (6)

where Yprd, Yexp, and Ymtrn are the anticipated, investiga-
tional, and standard experimental activity in the training set,
respectively.

A test set was used to externally validate the generated
model by assessing the value of Rpred

2, as follows:

R2
prd ¼ 1�

P�
Yprd � Yexp

�2
P�

Yexp � Ymtrn

�2 (7)

where Yprd and Yexp are the predicted experimental and

average experimental activity of the test set, respectively, and
Ymtrn is the average experimental activity of the training
set.41

Y-randomization test

Randommultiple linear regression models were generated

with a training set of Y-randomized tests. In this case, the R2

and Q2 values were required to be low for the QSAR model
to be constructed.41 Additionally, the coefficient of
determination cR2p was required to exceed 0.5 to pass this

test and was also calculated in the Y-randomization test, as
follows:

cR2p ¼ Rx (R2 � R2r)2 (8)

SwissADME

SwissADME, an online tool available to predict phar-
macokinetics, drug-likeness, physiochemical properties, and

medicinal chemistry,42 was used to estimate the potency
was estimated based on their in silico characteristics, and
we were asked to modify these compound, CPY1A2,

CPY2C19, CPY2C9, CPY2D6, CPY34A, and Lipinski’s
rule of five.43

Molecular docking studies of the investigated compound
against the PC3 receptor

The optimized compounds underwent molecular dock-

ing with the androgen receptor 5T8E (Figure 1)
downloaded from the Protein Data Bank and were
prepared in Discovery Studio software. The ligands were
also transformed to PDB format. Pyrex docking

software was used to calculate the binding affinities of
the ligands and receptors.44 The target receptor may
play a role in remodeling the effectiveness and strength

of the recommended compounds as potential cancer
drugs.
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Results and discussion

In silico methods are computational approaches used to

obtain and optimize potential drug candidates. QSAR
models the activity of various compounds as a linear com-
bination of specific molecular descriptors. A molecular

descriptor is a numerical value representing a particular
molecular property of a compound.45,46 A robust QSAR
model uses molecular descriptors that significantly

influence the activity of the compounds and can be used to
predict the activity of other similar compounds.47

In this study, a QSAR model was constructed to predict
the antiproliferative activity of thiosemicarbazone-indole

derivatives. The Kennard-Stones algorithm was used in
Dataset Division GUI v1.2 software to split the data into test
and training sets. The training set was used to construct the

model, whereas the test set was used to validate the model.
Using the genetic function algorithm, we constructed five
distinct QSAR models. Model 1 had the best performance,

according to its statistical fitness. The selected QSAR model
was powerful and predictable, with R2 (coefficient of
determination) ¼ 0.972517, Radj (adjusted r-

squared)¼ 0.964665, cRp2 ¼ 0.780922, and LOF (leave-one-
out cross-validation) ¼ 0.076524, respectively.

Model 1:

Y ¼ �1.0308891697*SHBd þ 0.407863672*

SsCH3 � 115.07794375*JGI2 � 0.150532229*RDF60p (9)

The biological, computed, and residual values of

thiosemicarbazone-indole compounds are presented in
Table 1. The low residual values, derived from the difference
between biological and computed activity, displayed high

predictive power in equation (1) (residual ¼ biological
activity � computed activity). Descriptors from model 1
are interpreted and displayed in Table 2, and each
molecular descriptor significantly contributed to predicting

compound activity.
The average effect of the model 1 parameters revealed that

SsCH3 had a positive coefficient; therefore, an increase in

this factor would elevate the bioactivity of these derivatives.
In contrast, SHBd, JGI2, and RDF60p had negative
Figure 1: Crystal structure of the prepared androgen receptor

(PDB ID: 5T8E).
coefficients; therefore, a decrease in these descriptors would
increase the experimental activity of thiosemicarbazone-

indole compounds. These findings highlight the contribu-
tion of each descriptor to predicting the response activity.

Table 2 displays the 2D and 3D descriptors of these

models, including SHBd, SsCH3, JGI2, and RDF60p.
For instance, SHBd is a 2D sum of estate for the
(strong) hydrogen bond donor, SsCH3 is a 2D sum of

atom-type E states: CH3 and JGI2 represent the 2D
average topological charge exponents of order 2, and
RDF0p is the 3D radial distribution function, weighted by
060/relative polarizability.

Table 3 provide the accepted QSAR validation tool and
the minimum required values for evaluating the model.48

The accuracy of the equation was assessed according to the

pIC50 values of the calibration compounds and the validity
of compounds.

To confirm the stability, reliability, and robustness of the

built QSAR model, we conducted Y-randomization tests.
The results of multiple trials for R2 and Q2 values are pre-
sented in Table 4. A cR2p value above 0.5 signifies that the
model has a good fit and is capable of making accurate

predictions, reflecting the model’s robustness and reliability
in predictive tasks. Table 5 shows the statistical parameters
of the built models. Additionally, a graph of calculated

pIC50 values versus biological pIC50 values was plotted to
illustrate the relationships among the derivatives in
Figure 2. Figure 3 depicts a plot of experimental activity

versus standardized residuals for the derivatives.
Docking results

In silico molecular docking methods can be used to
examine the binding relationship between a ligand and re-
ceptor. Macromolecules known as receptors are typically

found in tissues, biological receptors, and enzymes. The
primary focus of molecular docking is on the type of inter-
action between the receptor and the ligands, as well as the

binding affinity or energy.49,50 In silico compounds are
created with structure-based techniques, and the results of
molecular investigations are used. The investigated com-

pounds (thiosemicarbazone-indole) targeting PC3 cell lines
underwent docking studies with the protein target (PDB ID:
5T8E). The binding scores, representing the affinity of a

compound to its receptor, and indicating the robustness of
the interaction, are displayed in Table 1.

The relationship between compounds 22 and 7 and the
androgen receptor, including binding affinity, is described in

Table 6, which shows the nature of their interactions and the
amino acid residues involved in interacting with the receptor.
Because of their docking scores of �8.8 and �8.5 kcal/mol,

respectively, compounds 22 and 7 were chosen for these
experiments, and demonstrated robust contact between the
docking ligand and the receptor. The most common

interactions among the chosen ligands were alkyl and pi-
alkyl, although the range of bonding interactions also
included Van der Waals, conventional hydrogen bonds, and

carbon hydrogen bonds. According to the molecular docking
results, the most frequent amino acid residues for all studied
compounds were VAL, ALA, LYS, GLY, PRO, TRY,
ARG, GLU, and GLN (Table 6).



Table 1: Verified and calculated pIC50 values of thiosemicarbazone-indole series against the PC3 cancer cell line.

S/No Compounds pIC50 Predicted IC50 Residual Docking score (kcal/mol)

1. 6.4244 6.6179 �0.1935 �6.2

2.a 5.6531 5.7726 0.1195 �7.7

3. 6.2907 6.3862 0.955 �8.3

4. 5.8465 5.9383 0.0918 �7.9

5. 6.6179 6.7237 0.1058 �8.1

6. 7.0915 7.1495 0.058 �8.1

7.a 6.9172 6.4973 �0.4199 �8.5

8. 7.2146 7.1707 �0.0439 �8.4

9. 7.2676 7.2529 �0.0147 �7.4

10. 5.6047 5.5104 �0.0942 �7.7

11.a 6.8762 6.7675 �0.1087 �8.1

12. 7.0315 7.2046 01731 �8.3

(continued on next page)
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Table 1 (continued )

S/No Compounds pIC50 Predicted IC50 Residual Docking score (kcal/mol)

13. 7.0409 6.8889 �0.152 �7.7

14. 5.8236 5.9321 0.1085 �7.5

15. 7.0757 7.0517 �0.024 �8.1

16. 5.7956 5.9655 0.1699 �7.9

17. 6.3429 6.3676 0.0247 �7.4

18.a 6.4922 6.1244 �0.3678 �8.2

19. 6.1506 6.1608 0.0102 �8.2

20. 6.0236 6.0866 0.063 �8.4

21. 7.2676 7.0765 �0.1911 �7.9

A.I. Kubo et al.828



Table 1 (continued )

S/No Compounds pIC50 Predicted IC50 Residual Docking score (kcal/mol)

22. 4.7698 4.6825 �0.0873 �8.8

23.a 5.2740 4.9504 �0.3236 �8.0

24. 6.3915 6.2922 �0.0993 �8.4

a Denotes test set.

Table 2: Definition and class of molecular description in the build model.

Name Definition Class

SHBd Sum of estate for (strong) hydrogen bond donors 2D

SsCH3 Sum of atom-type E state: CH3 2D

JGI2 Mean topological charge index of order 2 2D

RDF60p Radial distribution function 060/weighted by relative polarizability 3D

Table 3: QSAR validation tool.

Validation tool Interpretation Accepted value

R2 Coefficient of determination �0.6

Rcv
2 Cross validation coefficient >0.5

Radj
2 Adjusted coefficient of determination >0.5

R2 � Qcv
2 Difference between R2 and Q2

cv �0.03

Next/test set Minimum number of external test set �5

R2
test set Coefficient of determination of external and test set �0.5

Table 4: Y-randomization test.

Model R R2 Q2

Original 0.914764 0.836794 0.754947

Random 1 0.282576 0.079849 �0.37938

Random 2 0.274074 0.075117 �0.5798

Random 3 0.224871 0.050567 �1.49993

Random 4 0.248583 0.061793 �0.79437

Random 5 0.415275 0.172453 �0.21632

Random 6 0.336942 0.11353 �0.85686

Random 7 0.444572 0.197644 �0.1481

Random 8 0.32334 0.104549 �0.42676

Random 9 0.176534 0.031164 �0.42356

Random 10 0.559751 0.313321 �0.14548

Random model parameters

Average r: 0.328652

Average r2: 0.119999

Average Q2: �0.54706

CRp2: 0.780922

Compounds targeting prostate cancer cells 829



Table 5: Statistical parameters for the developed models.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5

Friedman LOF 0.076524 0.085553 0.104593 0.104676 0.105337

R-squared 0.972517 0.969275 0.962437 0.962407 0.962169

Adjusted R-squared 0.964665 0.960496 0.951705 0.951666 0.951361

Significant regression YES YES YES YES YES

Significance-of-regression F-value 123.8526 110.4132 89.67639 89.60198 89.01778

Critical SOR F-value (95%) 3.160163 3.160163 3.160163 3.160163 3.160163

Replicate points 0 0 0 0 0

Computed experimental error 0 0 0 0 0

Lack-of-fit points 14 14 14 14 14

Minimum experimental error for

non-significant LOF (95%)

0.099165 0.104852 0.115934 0.11598 0.116346

Figure 2: Scatter plot of biological activity against calculated activity.

A.I. Kubo et al.830
Figure 4 illustrates the interaction of compound 22 with
the receptor, whereas Figure 5 shows the interaction of
compound 7 with its receptor. The unique compound-

receptor binding outcomes were attributed to the existence
of salt bridges, pi-sulfur, and pi-sigma interactions.

Drug-likeness and pharmacokinetics studies

SwissADME is an online tool designed for studying the
pharmacokinetic, physicochemical, and medicinal chemistry
Figure 3: Scatter plot of standardized residual versus investiga-

tional activity.
sensitivity of small molecules.51 After the molecules are
imported into SwissADME, the results are displayed in a
web browser for ease of visualization, and a PDF version

of the report is saved.52 The compounds under
investigation were examined to determine drug-likeness.
The molecular weight of these compounds was �500 MW,

the number of hydrogen bond donors (HBD) was five or
fewer, and the number of hydrogen bond acceptors (HBA)
was 10.6 (Table 7). Their bioavailability score of 0.55

indicated the compounds’ ability to be absorbed, and their
synthetic accessibility of 3.42e3.52 predicted their ability
to be conveniently synthesized in laboratory settings.

Hence, our findings suggested that compounds 22 and 7
inhibitors were candidates for synthesis.

Drug metabolism depends on the class of enzymes (cy-
tochrome p450), including CPY1A2, CPY2C19, CPY2C9,

CPY2D6, and CPY3A4. The investigated compounds had
favorable predicted pharmacokinetic properties (Table 8).
These compounds are inhibitors of CPY1A2, 2C19, 2C9,

and 34A. Additionally, they are not substrates of P-gp and
cannot penetrate the bloodebrain barrier. Therefore, these
compounds have positive pharmacokinetic properties and

may serve as potential drugs for inhibiting the PC3 cancer
cell line, because they passed the analysis for drug friendli-
ness, had additional favorable physicochemical qualities, and



Figure 4: 2D and 3D representations of compound 22 in the active site of the 5T8E receptor.

Figure 5: 2D and 3D representations of compound 7 in the active site of the 5T8E receptor.

Table 6: Molecular docking interactions in select compounds.

Compound Binding affinity (kcal/mol) Amino acid Interaction

22 �8.8 kcal/mol VAL A:715, ALA A:748, LYS A:808 Van der Waals, salt bridge,

GLY A:683, PRO A: 682, TRY A:763 attractive charge,

PRO A:766, VAL A:684, ARG A:752 conventional hydrogen bond,

PHE A:804, GLU A:681, TRP A:751 carbon hydrogen bond,

GLN A:711 unfavorable positive-positive,

pi-sulfur, alkyl, pi-alkyl

7 �8.5 kcal/mol PRO A: 766, TYR A:763, ASN A:756 Van der Waals, pi-sigma,

GLU A:681, ARG A:718, LYS A:808 conventional hydrogen bond,

LEU A:744, TRP A:718, VAL A:715 carbon hydrogen bond,

ALA A:748, GLN A:711, GLY A:683 unfavorable positive-positive

PRO A:682, VAL A:684 alkyl, pi-alkyl

Table 7: Predicted drug-likeness properties of the selected compounds.

Molecule Molecular weight HBA HBD MLogP Synthetic accessibility Bioavailability score Lipinski violation Drug-likeness

22 470.59 3 4 2.41 3.52 0.55 0 Yes

7 491.01 3 4 2.68 3.42 0.55 0 Yes
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Figure 6: Bioavailability tracking system for molecules 22 and 7.

Table 8: Predicted pharmacokinetic properties of the selected compounds.

S/no GI absorption BBB permeant P-gp substrate CPY inhibitors

CPY1A2 CPY2C19 CPY2C9 CPY2D6 CPY34A

22 Low No No Yes Yes Yes No Yes

7 Low No No Yes Yes No No Yes
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followed Lipinski’s rule of five. Consequently, the selected
compounds may be candidates for preclinical trials. In
addition, the bioavailability radars of molecules 22 and 7 are

displayed in Figure 6.
This study provides insight into the activity of thio-

semicarbazone compounds, and offers information to sup-

port future studies on molecular modification and the in
silico design of other thiosemicarbazone compounds, with
the aim of improving the receptor binding affinity of ligands

22 and 7. However, further validation through in vivo and
in vitro analysis is recommended, because thiosemicarbazone
might be a promising plant source for a drug molecule that
can treat prostate cancer.

Conclusion

This study used QSAR, molecular docking, and phar-
macokinetic techniques on thiosemicarbazone-indole de-
rivatives to generate a model. Of the five models constructed,

model 1 was selected and found to be statistically fit, as
evidenced by the following validation parameters:
R2 ¼ 0.972517, Radj ¼ 0.964665, cRp2 ¼ 0.780922, and
LOF ¼ 0.076524. The QSAR model indicated that an in-

crease in SsCH3, and decreases in SHBd, JGI2, and
RDF60p, would enhance the biological activity of the
thiosemicarbazone-indole derivatives, thereby suggesting the

potential of these compounds as effective remedies for
treating the PC3 cancer cell line.

The best compounds, 22 and 7, were subjected to molec-

ular docking, and demonstrated positive stability and in-
teractions with amino acid residues at the crucial target site.
The most common residues across all reported compounds
were VAL, ALA, LYS, GLY, PRO, TRY, ARG, GLU, and

GLN.
Pharmacokinetic and drug-likeness predictions indicated
that both compounds 22 and 7 were within the maximum
accepted oral bioavailability ranges for drug molecules.

Moreover, the two chosen compounds adhered to Lipinski’s
rule of five. Overall, our findings suggest that compounds 22
and 7 may be promising potential candidates for further

development as orally bioavailable drugs targeting the PC3
cancer cell line.
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