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A B S T R A C T

This study explores the therapeutic potential of fatty acids (FA1-FA12) in the treatment of diabetes mellitus, 
focusing on their modulation of lipid-sensing nuclear receptors PPARδ/γ. Network pharmacology analysis 
highlighted key pathways involved in diabetes, including PI3K-Akt, MAPK, and insulin signaling, with targets 
such as PPAR, INSR, SLC2A4, and AKT1, suggesting a multi-target approach to disease modulation. To inves-
tigate their mechanism of action, a pharmacophore model was developed based on the PPAR-γ inhibitor Pio-
glitazone, offering insights into the essential structural features for ligand binding. Molecular docking studies 
revealed that FA1 and FA2 exhibited favorable binding affinities at the active sites of both PPAR-γ and PPAR-δ 
and MD trajectory analysis to evaluate binding orientation and stability of the molecules and the energy profiles 
of the molecules FA1 (Palmitic acid) and FA2 (Myristic acid), both in complex with the both PPAR-γ and PPAR-δ 
protein, were assessed. Additionally, computational analyses, including DFT and ADMET predictions, provided 
valuable information on the electronic and physicochemical properties of the fatty acids. Although these com-
pounds displayed promising lipophilicity and permeability, their poor aqueous solubility indicates the need for 
optimization in drug development. Overall, this study lays a foundation for the exploration of fatty acids as 
potential therapeutic agents for diabetes, particularly through their modulation of PPARδ/γ activity for glycemic 
regulation.

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized 
by persistent hyperglycemia, which has become a major global health 
issue (Forouhi and Wareham, 2010). Type II diabetes mellitus (TIIDM), 
the most common form of the disease, develops due to insulin resistance 
and insufficient insulin secretion (DeFronzo et al., 2015). This imbal-
ance leads to complications such as dyslipidemia, hypertension, and 
damage to vital organs like the eyes, kidneys, and cardiovascular system 
(Mauricio et al., 2020). The increasing prevalence of TIIDM is strongly 
associated with environmental factors, such as sedentary lifestyles and 
poor dietary habits, which are further exacerbated by genetic predis-
position (Ding et al., 2021). The International Diabetes Federation (IDF) 
estimates that 537 million adults are currently living with diabetes, a 
number projected to rise to 783 million by 2045 (McGillicuddy and 
Roche, 2012; Wang et al., 2022).

One promising therapeutic approach for managing TIIDM involves 

targeting lipid-sensing nuclear receptors, particularly PPARδ and PPARγ 
(Gharge et al., 2025; Gharge and Alegaon, 2024). These receptors play 
critical roles in regulating lipid metabolism, glucose homeostasis, and 
energy balance, making them attractive targets for developing thera-
peutic interventions (Agbu and Carthew, 2021). PPARγ, in particular, 
has gained significant attention due to its key role in adipogenesis, lipid 
storage, and glucose uptake in tissues such as adipose tissue and the liver 
(Festuccia et al., 2011). Activation of PPARγ enhances insulin sensi-
tivity, reduces inflammation, and improves lipid metabolism, offering 
substantial benefits for diabetes management. In contrast, PPARδ, which 
is primarily expressed in skeletal muscle and adipose tissue, promotes 
fatty acid oxidation and enhances insulin sensitivity, making it a crucial 
regulator of metabolic functions (Patil et al., 2024). As a result, both 
PPARγ and PPARδ represent valuable targets for managing glycemic 
control and reducing the metabolic complications associated with 
TIIDM (Gharge et al., 2024a,b,c).

PPARγ has been extensively studied, with several natural and 
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synthetic ligands being developed for the treatment of diabetes, obesity, 
cardiovascular diseases (CVD), and even cancer (Villacorta et al., 2009). 
Pioglitazone, a well-known PPARγ agonist, has demonstrated significant 
therapeutic effects, including improving liver function in animal models 
of renal ischemia-reperfusion and reducing blood pressure by alleviating 
oxidative and endoplasmic reticulum stress (Mirza et al., 2019). More-
over, PPARα and PPARβ/δ isoforms have gained renewed interest in 
recent years. Selective PPARβ/δ agonists, such as KD-3010 and 

Seladelpar, have been tested for non-alcoholic steatohepatitis (NASH), 
although their clinical approval has been delayed due to their inability 
to reduce lipid accumulation in hepatocytes (Palomer et al., 2018). On 
the other hand, PPARα agonists like WY14643 and Fenofibrate have 
shown promise in treating obesity and hepatic steatosis, while dual 
PPARα/δ agonists, such as Elafibranor, are currently undergoing phase 3 
trials for NASH treatment (Gong et al., 2023). The interplay between 
these nuclear receptors and the regulation of glucose and lipid 

Fig. 1. A visual journey showcasing varying structures and chemical properties of fatty acids.
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metabolism is vital for the development of targeted therapies aimed at 
treating diabetes and associated metabolic disorders.

Fatty acids (FA1 to FA12), essential components of lipids, are crucial 
for energy storage and cellular functions. Chemically, they consist of 
long hydrocarbon chains with a carboxyl group (-COOH) at one end. 
They are classified based on their structure: Saturated Fatty Acids (SFAs) 
have no double bonds in the hydrocarbon chain, making them solid at 
room temperature (e.g., palmitic acid, stearic acid). Monounsaturated 
Fatty Acids (MUFAs) contain one double bond, causing a bend in the 
chain and making them liquid at room temperature (e.g., oleic acid). 
Polyunsaturated Fatty Acids (PUFAs) have two or more double bonds, 
introducing multiple bends that keep them liquid at room temperature, 
with examples like omega-3 (e.g., EPA, DHA) and omega-6 fatty acids (e. 
g., linoleic acid). Conjugated Fatty Acids, such as conjugated linoleic 
acid (CLA), have alternating single and double bonds and are found in 
meat and dairy products, influencing fat metabolism (Burdge and 
Calder, 2015; Spector, 1999) Short-Chain Fatty Acids (SCFAs), with 
fewer than six carbon atoms, are produced by gut bacteria from dietary 
fibers and play roles in gut health and energy metabolism. The varying 
structures and chemical properties of these fatty acids significantly 
impact their biological functions and health effects, fatty acids are 
currently utilized primarily as dietary supplements rather than stand-
alone therapeutic agents for diabetes. (Fig. 1).

These diverse types of fatty acids differ significantly in their chemical 
structure and functional properties, which in turn affects their roles in 
health and disease derived from herbal or natural plants are bioactive 
compounds with diverse therapeutic properties. The ability to modulate 
lipid-sensing nuclear receptors, such as PPARγ and PPARδ, through 
structure-based drug design offers a promising avenue for therapeutic 
interventions (Falomir-Lockhart et al., 2019). By optimizing fatty 
acid-like molecules to selectively activate or inhibit these receptors, it is 
possible to enhance insulin sensitivity, improve lipid metabolism, and 
mitigate associated metabolic complications such as dyslipidemia and 
inflammation (Shen et al., 2021). Computational approaches, including 
molecular docking, molecular dynamics simulations, and pharmaco-
phore modeling, are extensively utilized to evaluate ligand interactions 
with target receptors. This study primarily focuses on in silico analyses 
to assess fatty acid affinity, potency, and specificity, contributing to the 
development of potential therapeutic agents for diabetes and metabolic 
disorders.

2. Materials and methods

2.1. Data set preprocessing

Marketed antidiabetic agents, particularly glitazones, were retrieved 
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). The 
core structure of fatty acids for this study was designed based on insights 
from established literature, as depicted in Fig. 1. A series of 12 (FA1 to 
FA12) congeneric fatty acid molecules were subsequently generated and 
sketched using the 2D sketcher tool in Maestro 13.2. These molecules 
were then energy-minimized using the OPLS4 force field to ensure 
optimized geometry for further analysis.

2.2. Compound-disease-Target-Pathway network construction

In this study, a comprehensive network model was constructed using 
Cytoscape 3.7.1 to explore the intricate interactions between compo-
nents, diseases, targets, and pathways associated with Diabetes Melli-
tus. The model integrated a series of active fatty acids (FA1 to FA12) 
and their corresponding interaction targets to identify key proteins 
potentially modulated by these compounds. Initially, gene targets 
associated with Diabetes Mellitus were sourced from the GeneCards 
database (http://www.genecards.org/), which provided a comprehen-
sive list of genes implicated in the disease. In parallel, the genes related 
to the active fatty acids (FA1 to FA12) were input into the STRING 

database (https://www.string-db.org/), a well-known tool for 
exploring protein-protein interactions (PPI). The STRING database 
was used to generate a protein interaction network, which was subse-
quently visualized and analyzed using Cytoscape to uncover potential 
connections and interactions between fatty acids and targets involved in 
Diabetes Mellitus.

The PPI network was carefully examined and filtered to prioritize the 
most relevant interactions, focusing specifically on the proteins most 
likely to serve as therapeutic targets for Diabetes Mellitus. The cyto-
hubba plug-in was employed to identify key targets within the network, 
utilizing node connectivity and betweenness centrality as metrics to 
determine the importance of each target. Targets with connectivity and 
betweenness values exceeding the average were considered for further 
investigation as they may represent critical therapeutic candidates. 
These top-ranked nodes, which were identified as having a central role 
in the network, were proposed as key targets for modulation by the fatty 
acids under study.

To further refine the analysis and gain deeper insights into the bio-
logical relevance of the identified targets, Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment an-
alyses were performed. The GO analysis provided insights into the 
associated biological processes, cellular components, and molecular 
functions of the identified targets, helping to elucidate the underlying 
biological mechanisms related to Diabetes Mellitus. The KEGG 
pathway enrichment analysis helped to identify signaling pathways that 
may be involved in the pathogenesis of the disease and their potential 
modulation by fatty acids. To visually represent the enriched pathways, 
a KEGG enrichment bubble plot was used, which annotated and 
highlighted the pathways most strongly associated with Diabetes Mel-
litus. This visual representation allowed for easy identification of po-
tential therapeutic targets and helped to link the fatty acids to specific 
biological processes and signaling pathways, this methodology in-
tegrates multiple databases and advanced analytical tools to create a 
comprehensive network model that highlights key targets for Diabetes 
Mellitus and their potential modulation by fatty acids. By utilizing 
Cytoscape, STRING, cytohubba, and enrichment analyses, this study 
provides a robust framework for identifying therapeutic targets and 
exploring their connections to the pathophysiology of Diabetes Mellitus, 
offering insights into potential treatment strategies. The approach uti-
lized in this study is designed to refine our understanding of disease 
mechanisms and enhance the development of targeted therapeutic in-
terventions for Diabetes Mellitus (Gharge et al., 2024a,b,c; Gudasi et al., 
2023).

2.3. Structure based pharmacophore modelling

In this study, cluster analysis revealed that Lipid-Sensing Nuclear 
Receptors are significantly modulated by the selected fatty acid mole-
cules. To ensure a robust computational analysis, pioglitazone was used 
as a positive control, while all 12 fatty acids (FA1-FA12) served as po-
tential negative controls in the structure-based drug design (SBDD) 
approach, following previously established methodologies. This 
approach enabled a detailed understanding of the molecular features 
critical for receptor binding and modulation. This method, which com-
bines the benefits of structure-based pharmacophore modeling, gener-
ates energetically optimized pharmacophore models. The e- 
Pharmacophore model was constructed using the PHASE module of the 
Maestro suite (Gharge et al., 2024a,b,c), identifying six critical phar-
macophore features within the active site: hydrogen bond donor (D), 
hydrogen bond acceptor (A), hydrophobic group (H), aromatic ring (R), 
positively ionizable (P), and negatively ionizable (N). These features 
were strategically positioned at chemically relevant locations within the 
binding site.

Fatty acids (FA1 to FA12) were screened and ranked based on their 
PHASE screen scores. The three-dimensional structure of the PPAR-γ 
receptor complexed with the crystal inhibitor 8N6 (Pioglitazone) (PDB 
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entry 5Y2O) was retrieved from the Protein Data Bank for structure- 
based pharmacophore generation. The receptor was pre-processed 
using the Protein Preparation Wizard in Maestro, involving the 
removal of water molecules and energy minimization (Gharge et al., 
2024a,b,c). The active site of the prepared PPAR-γ protein was identified 
using a 9.0 Å radius sphere, ensuring the inclusion of key residues 
critical for ligand interactions. This prepared and energetically mini-
mized structure was subsequently utilized for further modeling and 
analysis.

2.4. In silico study

2.4.1. Molecular docking studies
Docking studies were conducted using Glide’s Extra Precision (XP) 

mode within Schrödinger’s suite to examine the binding interactions 
and orientations of the inhibitors within the PPARδ/γ binding pocket 
(Gudasi et al., 2024). The XP mode enhances docking accuracy by 
reducing false positives through advanced scoring mechanisms and 
comprehensive flexible sampling. The scoring function evaluates mul-
tiple interactions, including hydrogen bonds, hydrophobic interactions, 
and pi-pi stacking. Top ligand (FA1 to FA4) structures were generated 
using Maestro, and the LigPrep panel was used for ligand preparation, 
with energy minimization carried out using the OPLS4 force field. The 
8N6 (Pioglitazone) crystal inhibitor of PPAR-γ (PDB ID: 5Y2O) and D32 
(2,3-dimethyl-4-{[2-(prop-2-yn-1-yloxy)-4-{[4-(trifluoromethyl)phe-
noxy]methyl}phenyl]sulfanyl}phenoxy)acetic acid) crystal inhibitor of 
PPAR-δ (PDB ID: 3GZ9) was obtained from the Protein Data Bank 
(https://www.rcsb.org) and the protein was prepared using 
Schrödinger’s Protein Preparation Wizard, which involved removing 
water molecules and generating the grid based on the co-crystal ligand 
Pioglitazone/8N6 (Gharge et al., 2024a,b,c). Bond orders were assigned, 
and pKa values were calculated at pH 7 ± 2. To ensure stability for the 
subsequent docking studies, the protein was then energy minimized 
using the OPLS4 force field.

2.4.2. Molecular dynamics (MD) simulations
Molecular dynamics (MD) simulations were conducted using Des-

mond to investigate the structural dynamics of the top fatty acids (FA1 
and FA2) within the PPARδ/γ binding pocket. The initial configurations 
for these simulations were derived from the docking studies, specifically 
utilizing the Pose Viewer files. To ensure an optimal starting structure, 
the system was subjected to energy minimization using the OPLS4 force 
field. The minimization process followed a two-step protocol. Initially, 
only the water molecules were minimized, while positional restraints 
were applied to the protein and ligand to maintain their docked con-
formations. This step helped in optimizing the solvation environment. 
Subsequently, a full minimization of the entire system was carried out to 
remove steric clashes and any unfavourable interactions, leading to a 
well-relaxed initial structure. To create a realistic biological environ-
ment, the system was solvated using the TIP3P water model within an 
orthorhombic box. The box dimensions were set to extend 10 Å beyond 
the protein in all directions, ensuring complete solvation and sufficient 
buffering space. To maintain charge neutrality, five sodium ions (Na+) 
were introduced into the system (Ranade et al., 2024a,b,c). Following 
minimization, the system underwent a gradual heating phase. The 
temperature was increased from 0 K to 310.15 K over a span of 100 ps 
under an NVT (constant number of particles, volume, and temperature) 
ensemble. During this stage, restraints were applied to the heavy atoms 
of both the protein and the ligand, allowing the solvent to equilibrate 
without significant perturbations to the complex. Subsequently, the 
system underwent density equilibration under an NPT (constant number 
of particles, pressure, and temperature) ensemble for 1 ns, maintaining a 
pressure of 1 bar. During this phase, the positional restraints on the 
protein and ligand were gradually released, allowing the system to reach 
the desired density and stabilize under physiological conditions.

The final stage of the MD simulation involved a 100 ns production 

run, ensuring a comprehensive evaluation of the dynamic behavior of 
FA1 and FA2 within the PPARδ/γ binding pocket. Advanced simulation 
parameters were employed following predefined conditions to enhance 
the reliability and accuracy of the results. Throughout the simulation, 
system properties such as root-mean-square deviation (RMSD), root- 
mean-square fluctuation (RMSF), hydrogen bonding interactions, and 
conformational stability were monitored and analyzed to gain insights 
into ligand-protein interactions and binding stability (Mortier et al., 
2015). Overall, this MD simulation approach provided a robust frame-
work for assessing the dynamic behavior and stability of FA1 and FA2 in 
the PPARδ/γ binding pocket, offering valuable insights into their po-
tential as modulators of this receptor.

2.4.3. Geometric optimization
The energy minimization process was used to predict the most stable 

molecular conformations, enabling the calculation of bond lengths, an-
gles, and dihedral angles for (FA1 to FA4). Density Functional Theory 
(DFT), a fundamental computational technique in quantum chemistry, 
was applied to analyze the electronic structure and properties of the 
molecules (Ranade et al., 2024a,b,c). Geometric optimization was car-
ried out using the B3LYP functional and the 6-31G (d, p) basis set in the 
Jaguar module of Schrödinger’s software. Additionally, an Electrostatic 
Potential (ESP) map was generated for each molecule. Quantum 
chemical parameters such as the energy gap (ΔEGAP), excitation bind-
ing energy (ω), dipole moment (μ), hardness (η), and local softness (σ) 
were calculated based on the values of the highest occupied molecular 
orbital (EHOMO) and the lowest unoccupied molecular orbital 
(ELUMO), using standard equations. 

ΔEGAP=ELUMO - EHOMO … … … … … … … … … … … … … … … … … … … … … … … 

… … … … … … … … … … … … … … … … ….1                                            

η= (ELUMO-EHOMO)/2 … … … … … … … … … … … … … … … … … … … … … … … 

… … … … … … … … … … … … … … … … … … ….2                                     

σ = 1/ η … … … … … … … … … … … … … … … … … … … … … … … … … … … … … 

… … … … … … … … … … … … … … … … … … … … ….3                              

μ= (EHOMO + ELUMO)/2 … … … … … … … … … … … … … … … … … 
… … … … … … … … … … …4                                                         

ω = μ2/2 η … … … … … … … … … … … … … … … … … … … … … … 
… … … … … … … … … …0.5                                                          

2.4.4. ADMET profile predictions
The selected fatty acid molecules (FA1 to FA4) were evaluated for 

their adsorption, distribution, metabolism, excretion, and toxicological 
(ADMET) properties using the QikProp module of Schrödinger’s soft-
ware (Kavalapure et al., 2021).

3. Results

3.1. GO and KEGG pathway enrichment analysis for PPI network and 
cluster analysis

A protein-protein interaction (PPI) network was constructed by 
identifying common targets between fatty acids molecules and known 
diabetes mellitus targets (Fig. 2). This analysis revealed 51 shared tar-
gets, providing a foundation for exploring potential therapeutic strate-
gies. To gain deeper insights into the underlying biological processes 
and pathways, ClueGO and CluePedia were utilized. These Cytoscape 
plugins integrate Gene Ontology (GO) and pathway enrichment ana-
lyses, offering a visual representation of functionally grouped networks 
and associated gene/protein interactions. The constructed PPI network 
identified 805 biological processes and 107 KEGG pathways (Fig. S1). 
Notably, the KEGG pathways "Type II diabetes mellitus" (KEGG:04930) 
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and "Insulin resistance" (KEGG:04931) were prominently represented, 
underscoring their critical roles in the disease. Key genes implicated in 
these pathways include GCK, INSR, MAPK1, MAPK8, MTOR, PIK3CB, 
PRKCD, and SLC2A4, which are involved in glucose metabolism, insulin 
signaling, and cellular stress responses. The overlap between these 

pathways, particularly in genes such as AKT1, GSK3B, INSR, MAPK8, 
MTOR, PIK3CB, PPARA, PRKCD, and SLC2A4, highlights the central role 
of impaired insulin signaling and glucose uptake in the pathogenesis of 
diabetes mellitus (Fig. 2). These findings provide a strong foundation for 
further investigation of novel therapeutic targets and strategies for the 

Fig. 2. a) Protein-protein interaction identified for compounds via string, b) The cluster analysis where cluster 1: Purple; cluster 2: Pink. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. KEGG Pathway enrichment analysis of PPI Network.
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treatment of diabetes mellitus.
MCODE cluster analysis, a topological clustering algorithm, was 

applied to the PPI network to identify densely interconnected protein 
modules. This analysis revealed two clusters, with cluster 1 (score =
15.176, 18 nodes, 129 edges) exhibiting the highest score and thus 
prioritized for further functional and pathway enrichment analysis 
(Fig. 4). GO enrichment analysis identified 65 biological processes 
significantly enriched (p-value <0.05) within cluster 1 (Fig. S2 and 
Fig. S3). Among these, several processes are particularly relevant to 
diabetes mellitus, including the positive regulation of fat cell differen-
tiation, positive regulation of carbohydrate metabolic process, regula-
tion of mitochondrial membrane potential, positive regulation of cell 
cycle phase transition, and epidermal growth factor receptor signaling 
pathway. These mechanisms collectively contribute to glucose homeo-
stasis, insulin sensitivity, and energy metabolism. Furthermore, KEGG 
enrichment analysis revealed 14 enriched pathways within cluster 1, 
providing additional insights into the molecular mechanisms involved in 
diabetes mellitus (Fig. 3).

3.2. Network pharmacology analysis

To elucidate the therapeutic effects of fatty acids in treating diabetes 
mellitus (DM) at a systems level, network analyses, including 
Compound-Target (C-T) and Target-Pathway (T-P) interactions, were 
conducted. A C-T network was constructed using Cytoscape 3.7.1, 
revealing 156 interactions between 6 compounds and 62 targets. Among 
the compounds, FA2 (degree = 29) exhibited the biggest number of 
interactions with the targets, followed by 7b (degree = 25), FA1 (degree 
= 25), FA3 (degree = 24), FA4 (degree = 23) and FA5 (degree = 23). 
These compounds with high degrees demonstrated their ability to target 
multiple receptors, contributing to the interconnected nature of the C-T 
network. All fatty acids modulated key targets involved in DM, such as 
PPAR, GAA, INSR, SLC2A4, PPARD, MAPK1, and AKT1, highlighting 
their multitargeting potential (Fig. 4). These findings suggest that these 
compounds may have broad-spectrum effects in treating DM by simul-
taneously targeting multiple biological pathways.

KEGG pathway analysis was integrated to map all targets and asso-
ciated pathways into a T-P network using Cytoscape 3.10.1. This 
network revealed 151 interactions among 47 targets and 21 disease- 
related pathways with a significance of P < 0.01. Notably, the PI3K- 
Akt signaling pathway was prominently modulated, connecting to 20 
nodes including PIK3CB, AKT1, SLC2A4, INSR, EGFR, MTOR, MAPK1, 
RAF1, GSK3B, PRKCA, GRB2, MDM2, MET, CDK4, KIT, FGFR2, NTRK1, 
KDR, ERBB2, and CDK2. MAPK signaling pathway (degree = 18) had the 
second biggest number of connections with the targets, followed by 
FoxO signaling pathway (degree = 13) (Mackenzie and Elliott, 2014), 
insulin signaling pathway (degree = 11) and TNF signaling pathway 
(degree = 10) (Maiese, 2015). The roles of these high-degree pathways 

in DM have been well established (REF). Besides, some other pathways 
also participated in the development of DM, such as mTOR signaling 
pathway, insulin resistance, Non-alcoholic fatty liver disease and 
JAK-STAT singling pathway (Fig. 5) (Lampropoulou et al., 2020). In 
addition, the compounds can also influence many Diabetes mellitus 
associated pathways, including Fat digestion and absorption, cholesterol 
metabolism, carbohydrate digestion and absorption, Glucagon signaling 
pathway and Glycerophospholipid metabolism (Kaltenecker et al., 
2019). The specific targets of compounds in this disease associated 
pathway consider that molecules could exert its therapeutic effects 
through influencing multiple pathways and acting on multiple targets in 
each pathway (Yanamadala, 2024). The network pharmacology and 
enrichment analysis, which predict their interactions with proteins and 
pathways associated with type II diabetes mellitus and its complications. 
Fig. 6 illustrates the proposed molecular mechanisms: (A) inhibition of 
HPA and HLAG and (B) activation of Lipid-Sensing Nuclear Receptors 
PPARδ/γ for Glycemic Regulation.

Natural ligands for PPARγ, such as the prostaglandin D2 derivative 
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and oxidized linoleic 
acid derivatives 9- and 13(S)-HODE, can activate PPARγ in vitro, but 
their in vivo pathways remain unproven (Marx et al., 2004). Synthetic 
PPARγ ligands, including thiazolidinediones (glitazones) like troglita-
zone, rosiglitazone, and pioglitazone, are effective insulin-sensitizing 
agents used to treat type 2 diabetes by reducing peripheral insulin 
resistance and lowering blood glucose. While troglitazone was with-
drawn due to liver toxicity, rosiglitazone and pioglitazone lack these 
adverse effects. PPARγ activation in adipose tissue is thought to improve 
insulin sensitivity by inducing adipogenesis, promoting differentiation 
of large, insulin-resistant fat cells into smaller, insulin-sensitive ones. 
This leads to decreased release of free fatty acids and insulin 
resistance-mediating adipocytokines, such as TNF-α and leptin, along-
side increased production of adiponectin, which enhances insulin 
sensitivity in the liver and skeletal muscle (Fig. 7a).

PPARβ/δ, another lipid-sensing receptor, regulates fatty acid oxida-
tion in muscle and heart tissue. PPARβ/δ agonists have shown promise 
in normalizing lipid profiles and improving insulin resistance in animal 
models. Overexpression of PPARβ/δ reverses obesity in mice, suggesting 
its potential as a therapeutic target for obesity, insulin resistance, and 
dyslipidemia, with possible vascular benefits (Fig. 7b).

3.3. Structure based pharmacophore modeling

A four-feature (HAAA) e-pharmacophore model was constructed to 
identify key interactions within the active site of the PPAR-γ protein 
(PDB ID: 5Y2O) using the crystal inhibitor Pioglitazone (8N6) as a 
reference. This model, illustrated in Fig. 2, highlights essential structural 
features required for effective binding and activity, serving as a blue-
print for designing new compounds with potential PPAR-γ agonist 

Fig. 4. a) KEGG pathway analysis of the cluster 1, b) Gene ontology (Biological process) enrichment analyses of the cluster 1 by Clue GO plugin.

S. Gharge et al.                                                                                                                                                                                                                                  Aspects of Molecular Medicine 5 (2025) 100079 

6 



activity. The spatial arrangements, including inter-site distances and 
angles between pharmacophoric features, are also detailed in Fig. 8, 
providing critical insights into the structural requirements for PPAR-γ 
ligands.

The model incorporates three hydrogen bond acceptors (A2, A3, and 
A4) and one hydrophobic feature (H7). The distances between the ac-
ceptors are as follows: A2-A3 (8.41 Å), A3-A4 (4.51 Å), and A2-A4 (9.03 
Å). The hydrophobic group is positioned relative to the acceptors as H7- 
A2 (7.36 Å) and H7-A4 (12.20 Å). Calculated angles include A2-H7 
(95.7◦), A2-A4 (36.9◦), A2-A3 (29.7◦), and A3-A4 (67.5◦), with A2 
serving as the central reference point. These geometric relationships 
suggest that ligands matching these features may exhibit strong PPAR-γ 
agonist activity.

A library of fatty acid derivatives (FA1 to FA12) was screened against 
this pharmacophore model, with enrichment analysis using a decoy set 
of 1000 molecules (Fig. S4). Among the 12 screened fatty acids, the top 
four (FA1 to FA4) were ranked based on their fitness scores relative to 
the reference ligand, as shown in Fig. 9. Compound FA2 emerged as the 
best candidate, exhibiting five matches with scores of 1.82 for the phase 
screen, 0.57 for the vector, 0.86 for the alignment, and 0.54 for the 
volume. The chemical attributes of FA2 include a prominent hydrogen 
bond acceptor from the oxygen atom of its carboxylic group, which is a 
critical feature for its observed PPAR-γ agonist activity. These molecular 
characteristics, combined with its superior pharmacophoric alignment, 
underscore its potential as a lead compound. The overall strategy, 
integrating e-pharmacophore modeling, screening, and computational 

Fig. 5. Compound-disease-target-pathway network construction of fatty acids (FA1 to FA12) involved in TIIDM and respective pathways.

Fig. 6. Probable molecular mechanism of fatty acids in (A) HPA inhibitors (hsa00500, hsa04922, hsa00010), HLAG inhibitors (hsa00500, hsa04922, hsa00010) and 
(B) Lipid-Sensing Nuclear Receptors PPARδ/γ for Glycemic Regulation (hsa03320), represents checkpoints affected by the compounds in type II DM.
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analysis, is depicted in Fig. 9, illustrating a systematic approach to 
identifying potent PPAR-γ agonists (see Table 1).

3.4. Molecular docking

The molecular docking study of fatty acid molecules (FA1: Palmitic 
acid; FA2: Myristic acid; FA3: Stearic acid and FA4: Lauric acid) was 
performed against the crystal inhibitors of PPAR-γ (8N6, Pioglitazone, 
PDB ID: 5Y2O) and PPAR-δ (D32, PDB ID: 3GZ9) using the Schrodinger 
Suite 2020-1. The results, visualized through the Maestro interface, 
focused on the lipid-sensing nuclear receptors PPAR-γ and PPAR-δ in 
complex with their respective standard inhibitors. Among the tested 
molecules, FA1 and FA2 showed the most favorable binding affinities 
and critical interactions within the active pockets of PPAR-γ and PPAR-δ 
(Fig. S5 and Table 2).

In the PPAR-γ binding pocket, FA1 exhibited the highest binding 
affinity of − 8.14 with a glide energy of − 39.24 kcal/mol, forming 
hydrogen bonds with TYR473, HIE323, HIE449, and SER289. FA2 fol-
lowed closely with a binding affinity of − 8.02 and a glide energy of 
− 37.05 kcal/mol, interacting with the same residues. FA3 and FA4 
displayed slightly weaker affinities of − 6.99 and − 6.98, respectively, 

engaging HIE323, HIE449, and SER289. The reference compound, pio-
glitazone, exhibited superior binding with a binding affinity of − 10.57 
and a glide energy of − 59.11 kcal/mol, interacting with TYR473, 
SER289, and HIE323 (Fig. 10).

In the PPAR-δ binding pocket, FA2 demonstrated the strongest 
binding affinity of − 11.03 with a glide energy of − 41.11 kcal/mol, 
forming hydrogen bonds with TYR473, HIE323, and HIE449. FA1 
showed a binding affinity of − 9.64 and a glide energy of − 35.74 kcal/ 
mol, engaging TYR473 and HIE449. FA3 and FA4 displayed affinities of 
− 9.10 and − 8.87, respectively, interacting with TYR473, HIE323, and 
HIE449. The reference co-crystal ligand, D32, outperformed all tested 
molecules with a binding affinity of − 10.57 and a glide energy of 
− 59.11 kcal/mol, interacting with TYR473, SER289, THR288, and 
HIE323 (Fig. 11). The molecular docking study revealed that key amino 
acid residues, including TYR473, HIE323, and HIE449, are consistently 
involved in hydrogen bond interactions across all tested fatty acid 
molecules (FA1–FA4) and the standard inhibitors (Pioglitazone for 
PPAR-γ and D32 for PPAR-δ). These common residues play a crucial role 
in the binding stability within the active pockets of PPAR-γ and PPAR-δ, 
highlighting their importance in ligand-receptor interactions and po-
tential drug design targeting these nuclear receptors.

Fig. 7. Metabolic Actions of PPARγ and PPARδ a) In the liver, PPARγ primarily exerts its regulatory effects on adipocytes, influencing insulin signaling, cytokine 
production, and fatty acid (FA) metabolism. By modulating these processes, PPARγ plays a key role in maintaining glucose homeostasis and may also impact vascular 
function. Additionally, PPARγ is thought to contribute directly to insulin sensitivity in muscle tissue. b) PPARβ/δ primarily stimulates fatty acid oxidation in muscle, 
with some effects also observed in adipose tissue. As a result, agonists targeting PPARβ/δ could be beneficial for managing both obesity and insulin resistance.

Fig. 8. Inter-site angle (a) and inter-site distance (b) between different features of the developed e-Pharmacophore model. Pink spheres with arrow, hydrogen bond 
acceptor (A); solid green spheres, Hydrophobic region (H). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.)
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3.5. Molecular dynamic simulations

3.5.1. Intermolecular interactions in molecular dynamics simulation
A 100 ns molecular dynamics simulation using the Desmond pro-

gram was performed to investigate the stability and conformational 
dynamics of specific inhibitors within the binding pockets of PPAR-δ/γ 
proteins. The study evaluated key parameters, including Root Mean 
Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and 
hydrogen bond interactions, to assess the intermolecular interactions 
and structural behavior of both the protein and ligand.

For compound FA1, the protein-ligand RMSD plot revealed distinct 
conformational changes compared to the initial reference structure. The 
protein RMSD values were 2.020 Å for the C-alpha atoms and 2.098 Å for 
the backbone, with maximum deviation observed at frame 104. Ligand 
stability analysis showed maximum RMSD deviations of 2.681 Å when 
aligned on the protein and 1.551 Å when aligned on the ligand, occur-
ring at frame 65. RMSF analysis identified TYR473 as the most fluctu-
ating residue in the PPAR-γ protein, with RMSF values of 0.940 Å (C- 
alpha) and 1.048 Å (backbone), peaking at frame 260 (Fig. 12). The 
ligand RMSF values were 1.583 Å (aligned on the protein) and 1.559 Å 
(aligned on the ligand), with the highest fluctuation at frame 17, indi-
cating dynamic behavior in the binding pocket and the adaptability of 
the inhibitors (Fig. S7).

In the case of compound FA2, the protein RMSD values were 2.074 Å 
for the C-alpha atoms and 2.030 Å for the backbone, with the maximum 
deviation occurring at frame 312. Ligand RMSD values highlighted 

Fig. 9. e-Pharmacophore-based design strategy of fatty acids as potential PPAR-γ agonists.

Table 1 
Score of e-Pharmacophore hypothesis model.

Code Align Score Vector Score Volume Score PhaseScreenScore

Pioglitazone 0.94 0.64 0.67 1.97
FA2 0.86 0.57 0.54 1.82
FA1 0.81 0.55 0.52 1.62
FA4 0.76 0.42 0.52 1.33
FA3 0.72 0.43 0.50 1.32

Table 2 
Binding affinity and interactions of fatty acids (FA1 to FA4) using Glide module 
of Schrodinger’s.

Comp. Docking 
Score (XP)

Glide 
Energy 
(Kcal/mol)

Ligand Atom 
Hydrogen bond 
interactions

Bond 
Length 
(Å)

PPAR-γ binding pocket (PDB ID: 5Y2O)
FA1 − 8.14 − 39.24 - O of ligand to TYR 

473, HIE 323, 
HIE449, and SER289

1.91
2.18
1.23
1.21

FA2 − 8.02 − 37.05 -O of ligand to TYR 
473, HIE 323, 
HIE449, and SER289

1.20
1.27
1.45
1.24

FA3 − 6.99 − 32.34 -O of ligand to HIE 
323, HIE449, and 
SER289

2.18
1.02
1.14

FA4 − 6.98 − 30.22 -O of ligand to HIE 
323, HIE449, and 
SER289

1.31
1.02
1.07

Pioglitazone/ 
8N6

− 10.57 − 59.11 -O of ligand to 
TYR473, SER289 and 
HIE323

2.12
2.03
3.23

PPAR-δ binding pocket (PDB ID: 3GZ9)
FA1 − 9.64 − 35.74 -O of ligand to TYR 

473, and HIE449
1.23
1.21

FA2 − 11.03 − 41.11 -O of ligand to TYR 
473, HIE 323, and 
HIE449

1.24
1.52
1.26

FA3 − 9.10 − 37.88 -O of ligand to TYR 
473, HIE 323, and 
HIE449

1.71
1.24
1.05

FA4 − 8.87 − 32.69 -O of ligand to TYR 
473, and HIE449

2.14
1.25

D32 − 10.57 − 59.11 -O of ligand to 
TYR473, SER289, 
THR288 and HIE323

2.12
2.03
3.23
1.24
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deviations of 2.792 Å (aligned on the protein) and 1.997 Å (aligned on 
the ligand), with peak deviations at frame 11. RMSF analysis showed 
significant fluctuations in TYR473, with RMSF values of 1.495 Å (C- 

alpha) and 1.523 Å (backbone), peaking at frame 260. The ligand 
exhibited dynamic fluctuations, with RMSF values of 2.368 Å (aligned 
on the protein) and 1.430 Å (aligned on the ligand), reaching maximum 

Fig. 10. Orientation of fatty acids a) FA1, b) FA2 and c) Pioglitazone in crystal structure of PPAR-γ binding pocket.

Fig. 11. Orientation of fatty acids a) FA1, b) FA2 and c) D32 in crystal structure of PPAR-δ binding pocket.

S. Gharge et al.                                                                                                                                                                                                                                  Aspects of Molecular Medicine 5 (2025) 100079 

10 

https://www.rcsb.org/structure/4ZAU
https://www.rcsb.org/structure/4ZAU


fluctuation at frame 20. These observations suggest that compound FA2 
demonstrates notable interaction and mobility within the PPAR-γ 
binding pocket (Fig. S6).

For compound FA2, the RMSD values for the protein structure were 
2.044 Å for C-alpha and 2.027 Å for the backbone, with the maximum 
deviation at frame 152. Ligand stability was assessed with RMSD de-
viations of 2.286 Å (aligned on the protein) and 1.345 Å (aligned on the 
ligand) at frame 71. The RMSF plot for compound FA2 showed the 
highest fluctuations in TYR473, with RMSF values of 1.353 Å (C-alpha) 
and 1.562 Å (backbone) at frame 267. The ligand RMSF values were 
1.456 Å (aligned on the protein) and 1.313 Å (aligned on the ligand) at 
frame 19, indicating notable fluctuations in the PPAR-δ binding pocket 
(Fig. 13).

For compound FA3, protein RMSD values were slightly higher, at 
2.214 Å for the C-alpha atoms and 2.127 Å for the backbone, with the 
maximum deviation noted at frame 157. Ligand RMSD values were 
2.286 Å (aligned on the protein) and 1.345 Å (aligned on the ligand), 
peaking at frame 71. RMSF analysis again highlighted TYR473 as the 
most dynamic residue, with RMSF values of 1.423 Å (C-alpha) and 
1.652 Å (backbone), peaking at frame 263. The ligand showed RMSF 
values of 1.556 Å (aligned on the protein) and 1.403 Å (aligned on the 
ligand), with the highest fluctuation at frame 18, indicating significant 
interactions and structural adjustments within the PPAR-δ binding site 
(Fig. S6).

The molecular dynamics simulation results underscore the critical 
role of intermolecular interactions in maintaining the stability and 
adaptability of protein-ligand complexes. Residue TYR473 was consis-
tently identified as a hotspot of fluctuation across all molecules, 

reflecting its importance in binding pocket dynamics. The observed 
RMSD and RMSF values highlight the conformational flexibility and 
binding behaviours of the inhibitors, offering valuable insights into their 
potential as modulators of PPAR-δ/γ activity.

3.5.2. Intermolecular interactions in molecular dynamics simulation
Fig. 14 displays a stacked bar chart that illustrates the intermolecular 

interactions between inhibitors and the PPAR-δ/γ protein during the 
molecular dynamic’s simulation. The interactions are categorized into 
hydrogen bonds, hydrophobic interactions, ionic interactions, and water 
bridges, providing detailed insights into the dynamic behavior of each 
molecule within the binding pocket.

Compound FA2 exhibited a robust binding profile, forming hydrogen 
bonds with HIS323, HIS449, TYR473, hydrogen bonds and water 
bridges with GLN286, THR289, as well as hydrophobic interactions with 
LEU255, PHE282, CYS285, LEU339, ILE363. The 2D interaction dia-
gram further emphasizes its polar interaction with HIS449, HIS323, 
TYR473, and water bridge with THR289.

Compound FA2 exhibited a robust binding profile, forming hydrogen 
bonds with THR289, HIS323, HIS449, TYR473, as well as hydrophobic 
interactions with VAL334, PHE368. The 2D interaction diagram further 
emphasizes its polar interaction with HIS449, HIS323, TYR473, 
THR289, reinforcing its stability and diverse binding interactions within 
PPAR-δ active pocket.

Compound FA1 exhibited a robust binding profile, forming hydrogen 
bonds and water bridges with SER289, HIS323, TYR327, TYR473, as 
well as hydrophobic interactions with LEU330, MET334, ILE341, 
MET348. The 2D interaction diagram further emphasizes its polar 

Fig. 12. (a) Protein Ligand RMSD Plot of FA1, (b) Protein RMSF Plot over period of 100 ns within PPAR-γ protein.

Fig. 13. (a) Protein Ligand RMSD Plot of FA2, (b) Protein RMSF Plot over period of 100 ns within PPAR-δ protein.
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interaction with TYR327, water bridge with SER289, and salt bridge 
with LYS367, reinforcing its stability and diverse binding interactions 
within PPAR-γ active pocket.

Compound FA2 exhibited a robust binding profile, forming hydrogen 
bonds and water bridges with GLN286, SER289, HIS323, TYR327, 
HIS449, TYR473, as well as hydrophobic interactions with LEU255, 
ILE326, LEU330, ILE341, MET348, PHE363. The 2D interaction dia-
gram further emphasizes its polar interaction with TYR327, reinforcing 
its stability and diverse binding interactions within PPAR-γ active 
pocket. In summary, both compounds demonstrated robust and diverse 
binding interactions with PPAR-δ/γ proteins, with FA2 showing 
particularly strong polar and hydrophobic interactions that reinforce its 
stability and potential efficacy within the active sites.

3.6. Density functional theory (DFT) analysis

3.6.1. Optimization of molecular geometries
Table 4 provides a detailed summary of the optimization parameters 

for fatty acid molecular structures, encompassing total energy and gas- 
phase energy. The structural and electronic properties of these fatty 
acids were analyzed using quantum chemical calculations to understand 
their chemical behavior. Molecular orbitals, particularly the highest 
occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO), are pivotal in elucidating reactivity, stability, 
and kinetic properties.

The energy gap (ΔEGAP), a critical descriptor of chemical reactivity, 
was calculated alongside other quantum descriptors using the DFT/ 
B3LYP/6-31G (d, p**) method. As shown in Table 3, compounds FA1, 
FA2, FA3, and FA4 exhibit varying electronic properties, with FA3 
demonstrating the smallest ΔEGAP (0.141 eV). This smaller gap in-
dicates that FA3 has the highest reactivity and the lowest molecular 
hardness (η), which is directly proportional to the molecule’s resistance 
to reactivity or deformation. Consequently, FA3 emerges as the softest 
and most reactive compound in the series, as evidenced by its hardness 
value (η = 0.070526eV) and a high softness (σ = 14.179eV). Additional 
reactivity descriptors, including chemical potential (μ) and electrophi-
licity index (ω), further illustrate the electronic behavior of the 

Fig. 14. (a) Ligand protein contacts with the respective amino acids, b) Protein ligand contacts of molecules with the respective amino acids of the protein of the 
PPAR-δ/γ protein.

Table 3 
Final Energy of Geometry optimized structures.

Compound Gas Phase Energy (eV) ESP min, kcal/mol

FA1 − 779.520 − 33.11
FA2 − 858.150 − 34.84
FA3 − 700.305 − 157.53
FA4 − 622.255 − 35.52
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compounds. FA3 displays a chemical potential of 0.065745eV and an 
electrophilicity index of 0.030644 eV suggesting enhanced reactivity 
compared to the other fatty acids. Electrostatic potential (ESP) mapping 
was performed to visualize regions of high (negative) and low (positive) 
electron density across the molecular structures. These regions are 
instrumental in predicting sites susceptible to electrophilic and nucleo-
philic attacks. Using optimized geometries within the B3LYP/6-31G (d, 
p**) framework, the ESP maps (Fig. 15) and the results presented in 
Table 4 reveal critical interaction sites, offering valuable insights into 
the molecular dynamics of fatty acids.

3.7. ADME predictions

The ADME properties of fatty acid molecules (FA1–FA4) were eval-
uated using Schrödinger’s QikProp module, focusing on key pharma-
cokinetic and physicochemical parameters essential for drug 
development (Table S1). The analysis assessed properties such as lip-
ophilicity (QPlog Po/W), solubility (QPlogS), polar surface area (PSA), 
permeability (Caco-2 and MDCK assays), binding affinity to human 
serum albumin (QPlog Khsa), blood-brain barrier penetration (QPlog 
BB), human oral absorption (HOA), and compliance with drug-likeness 
rules (Lipinski’s Rule of Five and Jorgensen’s Rule of Three). The find-
ings, summarized below, highlight the potential of these molecules for 
further development.

The molecules exhibited strong lipophilicity, with QPlog Po/W 
values of 5.22 (FA1), 6.00 (FA2), 4.50 (FA3), and 3.75 (FA4), indicating 
excellent partitioning behavior in biological systems. Despite their 

favorable lipophilicity, the compounds displayed poor aqueous solubi-
lity, as indicated by QPlogS values of − 5.41 (FA1), − 6.33 (FA2), − 4.67 
(FA3), and − 3.70 (FA4), which fall outside the acceptable range (− 3.70 
to − 6.33). This suggests a potential challenge in achieving adequate 
solubility during formulation. Permeability assessments revealed 
promising outcomes. The MDCK assay results ranged from 131.34 nm/s 
(FA2) to 158.31 nm/s (FA4), while Caco-2 permeability values ranged 
from 234.71 nm/s (FA2) to 278.97 nm/s (FA4), indicating excellent 
membrane permeability for all molecules. Human oral absorption 
(HOA) predictions further corroborated their strong pharmacokinetic 
profiles, with FA1, FA3, and FA4 achieving a 3 rating (corresponding to 
100 % absorption) and FA2 achieving a 1 rating. Additional evaluations 
included QPlog Khsa values, which ranged from 0.031 (FA4) to 0.778 
(FA2), reflecting favorable binding affinity to human serum albumin. 
The QPlog BB values ranged from − 1.45 (FA1) to − 1.02 (FA4), sug-
gesting moderate blood-brain barrier penetration potential. The polar 
surface area (PSA) values were consistent across the series, around 50 
Å2, supporting balanced permeability and transport characteristics. All 
molecules complied with Lipinski’s Rule of Five (RoF) and Jorgensen’s 
Rule of Three (RoT), confirming their drug-likeness. The hydrogen bond 
acceptor (HBA) and donor (HBD) counts were within acceptable ranges, 
with all molecules having two HBAs and one HBD, indicating favorable 
hydrogen bonding potential. The solvent-accessible surface area (SASA) 
values varied from 538.13 Å2 (FA4) to 733.19 Å2 (FA2), further sup-
porting their favorable pharmacokinetic attributes.

4. Discussion

This study aimed to investigate the potential of fatty acids as ther-
apeutic agents for diabetes mellitus. Initially, 12 fatty acids (FA1-FA12) 
were subjected to network pharmacology analysis to identify their in-
teractions with proteins and pathways associated with the disease. This 
analysis revealed that these compounds modulate key targets involved 
in diabetes, such as PPAR, GAA, INSR, SLC2A4, PPARD, MAPK1, and 
AKT1, suggesting their potential to influence multiple biological path-
ways. To further refine the analysis, a structure-based pharmacophore 
model was generated using the PPAR-γ protein and its inhibitor, Pio-
glitazone, as a reference. This model identified key structural features 
required for effective binding and activity at the PPAR-γ receptor. Based 

Table 4 
Calculated quantum chemical parameters of fatty acid molecules Molecular 
electrostatic Potential Surface.

Quantum chemical 
parameters

FA1 FA2 FA3 FA4

EHOMO (eV) − 0.273949 − 0.269437 − 0.004781 − 0.267327
ELUMO (eV) 0.010703 0.009775 0.136271 0.012921
ΔEGAP (eV) 0.284652 0.279212 0.141052 0.280248
η (eV) 0.142326 0.139606 0.070526 0.140124
μ (eV) − 0.131623 − 0.129831 0.065745 − 0.127203
ω (eV) 0.060862 0.060370 0.030644 0.057737
σ (eV) 7.026123 7.163016 14.179168 7.136536

Fig. 15. Contours of HOMO, LUMO and ESP of FA1 to FA4.
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on this model, the 12 initial fatty acids were filtered, and the top 4 (FA1- 
FA4) were selected for further investigation. Molecular docking studies 
were then performed on these four selected fatty acids against PPAR-γ 
and PPAR-δ. The results showed that FA1 and FA2 exhibited the most 
favorable binding affinities and interactions within the active sites of 
both receptors. Key amino acid residues, such as TYR473, HIE323, and 
HIE449, were found to be crucial for binding stability within the active 
pockets of both receptors. Finally, density functional theory (DFT) cal-
culations were performed to assess the electronic properties of the 
selected fatty acids. These calculations revealed that FA3 exhibited the 
highest reactivity and the lowest molecular hardness, suggesting 
enhanced reactivity compared to the other fatty acids. Furthermore, all 
four fatty acids demonstrated favorable pharmacokinetic properties, 
including good lipophilicity, permeability, and compliance with drug- 
likeness rules. In conclusion, this study provides valuable insights into 
the potential of fatty acids as modulators of lipid-sensing nuclear re-
ceptors PPARδ/γ for glycemic regulation. The findings suggest that these 
compounds, particularly FA1 and FA2, may have therapeutic potential 
for diabetes mellitus by targeting key pathways involved in insulin 
signaling and glucose metabolism. Fatty acid-based therapies face lim-
itations such as poor bioavailability, metabolic variability, and lack of 
potency compared to synthetic PPAR agonists (Ðanić M et al., 2018). 
These challenges can be overcome by structural modifications, formu-
lation advancements (e.g., nano-delivery systems), and combining fatty 
acids with existing therapies to enhance efficacy and stability.

5. Conclusion

This study comprehensively explored the therapeutic potential of 
fatty acids (FA1-FA12) in managing diabetes mellitus by targeting lipid- 
sensing nuclear receptors PPAR-γ and PPAR-δ. Network pharmacology 
and protein-protein interaction (PPI) analyses highlighted key path-
ways, including PI3K-Akt, MAPK, and insulin signaling, emphasizing 
their role in glucose homeostasis. To ensure a robust computational 
analysis, pioglitazone was used as a positive control, while all 12 fatty 
acids (FA1-FA12) served as potential negative controls in the structure- 
based drug design (SBDD) approach. A four-feature (HAAA) e-pharma-
cophore model was developed using the PPAR-γ crystal structure (PDB 
ID: 5Y2O) with pioglitazone (8N6) as a reference, enabling the identi-
fication of key ligand-receptor interactions. Molecular docking and MD 
simulations further confirmed that FA1 (Palmitic acid) and FA2 (Myr-
istic acid) exhibited strong binding affinities and stable interactions at 
the PPAR-γ and PPAR-δ active sites. Free energy calculations distin-
guished the active fatty acids from the negative controls, reinforcing 
their potential role in improving insulin sensitivity and lipid meta-
bolism. While these findings support the therapeutic potential of FA1 
and FA2, further in vitro and in vivo validation is essential to confirm 
their efficacy and safety. Additionally, formulation strategies addressing 
solubility limitations will be necessary for potential clinical applica-
tions. This study establishes a strong foundation for developing lipid- 
sensing nuclear receptor modulators as novel therapeutic strategies for 
diabetes management.
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