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A B S T R A C T

FLT3 mutations, observed in approximately 30–35% of Acute Myeloid Leukemia (AML) cases, drive leukemic 
proliferation and survival pathways, presenting a significant challenge in clinical management. To address this 
therapeutic need, we employed a comprehensive computational approach integrating pharmacophore screening, 
molecular docking, ADMET analysis, and molecular dynamics simulations to identify potent inhibitors targeting 
FLT3. Utilizing ligand-based pharmacophore models generated from experimentally proven FLT3 inhibitors from 
BindingDB, we screened over 400,000 natural compounds from the COCONUT database. Hits identified through 
pharmacophore screening underwent further evaluation via Lipinski and Golden triangle criteria to ensure drug- 
like properties. Molecular docking against the FLT3 receptor, combined with ADMET analyses, facilitated the 
prioritization of lead compounds. Subsequently, three promising candidates were subjected to molecular dy-
namics simulations to assess binding stability. Our findings reveal three top-performing compounds, demon-
strating robust and stable binding affinity and favorable ADMET characteristics. These compounds hold promise 
as potential scaffolds or leads for developing novel FLT3 inhibitors in AML therapy.

1. Introduction

Acute myeloid leukemia (AML) represents a formidable hematologic 
malignancy characterized by aberrant myeloblast proliferation and 
impaired differentiation (Arber et al., 2016). With a prevalence 
exceeding 20,000 cases in the United States alone, AML is a significant 
healthcare burden, necessitating urgent exploration of novel therapeutic 
avenues (Cancer.Net, 2020; Majothi et al., 2020). Central to the path-
ogenesis of AML is the dysregulation of the FMS-like tyrosine kinase 3 
(FLT3) gene, occurring in approximately 30% of newly diagnosed cases 
(Arber et al., 2016). AML patients frequently harbor mutations in FLT3, 
with two primary mutation types identified: internal tandem duplication 
(ITD) mutations, found in 25–35% of cases, and tyrosine kinase domain 
(TKD) mutations, observed in 5–10% of cases. These mutations confer 
constitutive activation to FLT3, leading to uncontrolled proliferation of 
leukemic cells and contributing to the aggressive nature of AML 
(Sakaguchi et al., 2019) (see Tables 1 and 2, Figs. 1 and 12).

Despite advances in therapy, the prognosis for AML remains poor, 

with a five-year survival rate below 30% (Majothi et al., 2020). Targeted 
inhibition of FLT3 signaling has emerged as a promising therapeutic 
strategy, leading to the development of FLT3 inhibitors such as Mid-
ostaurin and Gilteritinib (Kiyoi et al., 2020). However, clinical efficacy 
is often hampered by the development of drug resistance, particularly in 
patients harboring FLT3-ITD/F691L mutations (Kawase et al., 2019). To 
address the challenge of drug resistance and improve therapeutic out-
comes, there is a growing interest in the discovery of novel FLT3 in-
hibitors. Computational drug design approaches, including molecular 
docking and molecular dynamics simulations, offer a powerful means to 
expedite the identification and optimization of potential inhibitors 
(Mahmud et al., 2021). Understanding these interactions is essential for 
designing effective inhibitors with enhanced efficacy and reduced 
toxicity (Fernandes et al., 2020).

Despite these advancements, significant gaps remain in our under-
standing of FLT3-driven leukemogenesis and the development of effec-
tive targeted therapies for AML. While first- and second-generation FLT3 
inhibitors have shown promise in clinical settings, challenges such as 
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drug resistance and off-target effects persist, highlighting the need for 
innovative therapeutic approaches. Moreover, the potential of natural 
products in FLT3 inhibitor discovery, particularly in combination with 
computational methods and databases like COCONUT, remains 
underexplored.

In recent years, natural products have garnered attention as a valu-
able source of lead compounds for drug discovery. Their structural di-
versity and bioactivity make them attractive candidates for the 
development of novel therapeutics (Newman and Cragg, 2020). Inte-
gration of natural products with computational screening techniques 
presents an opportunity to identify potent FLT3 inhibitors from large 
compound libraries, such as the Collection of Open Natural Products 
(COCONUT) database (Sorokina et al., 2021).

In this study, we aim to bridge these gaps by comprehensively 
exploring the potential of natural products as a source of novel FLT3 
inhibitors. By employing diverse ligand-based pharmacophore 
modeling, molecular docking, and molecular dynamics simulations, we 
seek to elucidate the molecular interactions between potential inhibitors 
and FLT3 protein residues. We endeavor to identify lead compounds 
with high binding affinity and selectivity for FLT3 through rigorous 
computational screening and analysis, offering promising candidates for 
further preclinical evaluation. By bridging the gap between computa-
tional drug design and natural product discovery, this study aims to 
contribute to the development of improved therapeutic strategies for 
AML, ultimately benefiting patients afflicted by this devastating disease.

2. Materials and methods

2.1. Protein preparation and receptor grid generation

In the Schrödinger Maestro protein preparation wizard, the protein 
was pre-processed with the PROPKA module for an optimization of H- 
bonds (Gokcan and Isayev, 2022), followed by minimization of struc-
tures towards convergence of heavy atoms at RMSD 0.3 Å using OPLS4 
force field and removal of water molecules more than 5 Å away from 
ligands afterward (Mahdizadeh et al., 2022).

The receptor grid was generated keeping the hydrophobic region 
(predicted by SiteMap module) and also the region where Gilteritinib 
was attached to the complex, at the centroid of the grid. The coordinates 
of the receptor grid were X = − 30.02, Y = − 11.86, Z = − 26.27, with 
ligand size up to 18 Å (see Fly. 2).

2.2. Dataset screening

COCONUT database (https://coconut.naturalproducts.net) was used 
as a database containing potential lead compounds. The following steps 
were employed to screen the compounds. At first, the compounds were 
screened by a generated pharmacophore model based on diverse ligands 
binding to FLT3. The screened hits were then prepared using the LigPrep 
module of Schrödinger. We employed the OPLS4 force field (Lu et al., 
2021), maintaining the ionization option as ’Do not change.’ Standard 
procedures for desalination, tautomerization, and computational 

adjustments were conducted following software defaults. The prepared 
ligands were docked with the FLT3 (6JQR). Then, the pharmacokinetic 
parameters, specifically Lipinki’s Rule of 5 were considered to analyze 
and filter the compounds. Finally, the docked structures were subjected 
to molecular dynamics to analyze the interaction between hits and FLT3. 
The schematic illustrative diagram of the screening steps used in the 
study is depicted in Fig. 3.

3. Pharmacophore modelling and screening

3.1. Pharmacophore hypothesis generation

To generate the pharmacophore model, the first 250 compounds 
related to the FLT3 gene were extracted from the binding database 
(https://www.bindingdb.org/bind/index.jsp) sorted by their respective 
IC50 values (Ganji et al., 2023). Four approved drugs that inhibit FLT3, 
namely Midostaurin (CID: 9829523), Quizartinib (CID: 24889392), and 
Gilteritinib (CID: 49803313) were used along with the relevant con-
formers for benchmark datasets This curated dataset was the foundation 
for subsequent pharmacophore model construction and screening en-
deavors. In the LigPrep module, the OPLS4 force field was used (Lu et al., 
2021), and the ionization option was set to “Do not change”. Further-
more, routine procedures involving desalination, tautomerization, and 
computational adjustments were implemented per software defaults. It 
helps to prepare high-quality 3D structures for drug-like molecules. 
Since Maestro format is the ideal and readable mode for Schrödinger 
software, this format was selected from the output directory.(see Fly. 4)

In the Develop Pharmacophore Model module, the hypothesis match 
was set to 25%, as the dataset consisted of highly diverse active ligands. 
The number of features in the hypothesis was kept from 4 to 7 with the 
preferred number to 5. The ranking and ring of the hypothesis were set 
to the default “Phase Hypo Score” (Yu et al., 2021). The Generate 
Conformer and Minimize Output conformer options were activated, 
with the target number of conformers set to 50 (Cole et. al., 2018).

3.2. Validation of the pharmacophore model

The parameters used for evaluating the efficiency of the developed 
pharmacophore model are enrichment factor (EF), receiver operating 
characteristic (ROC) curves (Triballeau et al., 2005), 
Boltzmann-enhanced discrimination of ROC (BEDROC) (Truchon and 
Bayly, 2007), and robust initial enhancement (RIE) (Truchon and Bayly, 
2007).Fig. 4

Table 1 
Statistical values of different parameters of the top 10 generated pharmacophore hypothesis.

Hypothesis ID PhaseHypo Score Survival Score Site Score Vector Score Volume Score BEDROC Score

ADRR_2 1.279276 5.764613 0.722581 0.878267 0.630862 0.933367
ADRR_1 1.278276 5.779649 0.730133 0.901594 0.619180 0.931503
DRRR_1 1.268708 6.001781 0.727387 0.950273 0.662953 0.908568
DRRR_2 1.266904 5.963407 0.717917 0.933409 0.650838 0.909149
DHRR_2 1.253880 5.783011 0.549320 0.863629 0.534004 0.906941
DHRR_1 1.247770 5.819535 0.569104 0.868776 0.564972 0.898633
DRRR_4 1.244470 5.849485 0.683864 0.884103 0.621290 0.893550
DRRR_3 1.241948 5.865835 0.693047 0.876708 0.634128 0.890004
ADRR_3 1.237998 5.763253 0.602948 0.890596 0.605610 0.892228
DDRRR_3 1.232596 6.256602 0.684735 0.882093 0.721721 0.857227

Table 2 
Top 3 compounds with COCONUT ID, interacting residues, and XP docking score 
(kcal/mol) of best-docked candidates, with zero golden triangle violations.

Compounds Major Interacting Residues XP Dock Score

CNP0099279 D829, E661, L689, I687. M625, K623 − 16.041
CNP0298793 K623, A627 − 14.869
CNP0347183 M625, F691, L689, E661 − 14.62
Gilteritinib D829 − 6.535
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A decoy set was created using the Generate DUDE Decoys program, 
which is found at http://dude.docking.org/generate (Mysinger et al., 
2012). For converting the output into 3D structures, Open Babel v2.4.1 

was used (O’Boyle et al., 2011). Ligand preparation was done following 
the default settings and the protocols of LigPrep. The OPLS4 force field 
(Lu et al., 2021) has been employed in the minimization procedure.

Fig. 1. The schematic diagram of the complete dataset screening steps used in this study.

Fig. 2. Crystal structure of FLT3 protein kinase domain (residues 610–943): The conserved site (green) highlights a region crucial for protein function and 
interactions. The ATP binding site (blue) signifies the location where ATP molecules bind to initiate kinase activity. The active site (red) is where phosphorylation 
events occur, leading to downstream signaling. The DFG-Out motif (purple) plays a role in regulating kinase activity. The juxtamembrane (JM) loop (magenta) is 
involved in protein localization and interactions. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)
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3.3. Screening using the pharmacophore model

The best pharmacophore model “ADRR_2” based on BEDROC Score 
was used to screen the COCONUT database (Marondedze et al., 2020). 3 
of 4 matches were selected and the “Prefer partial matches of more 
features” option was activated. The screening resulted in 83,429 com-
pounds from the database of 4,07,270 compounds. After LigPrep, the 
screened compounds generated 3,46,926 structures.

3.4. Molecular docking studies

Docking was limited to ligands with 100 rotatable bonds and fewer 
than 500 atoms. van der Waals radii scaling factor was set to 0.80, with a 
partial charge cutoff of 0.15. Sample nitrogen inversions and sample 
ring conformations were activated, and the ligand sampling was set to 
flexible. All predicted functional groups had bias sampling of torsions 
enabled. The module was configured to promote intramolecular 
hydrogen bonds and improve conjugated pi groups’ planarity. Docking 
was done using the Glide module of Schrödinger.

Docking was done through a series of hierarchical filters i.e. HTVS 
mode (high-throughput virtual screening) for efficiently screening 
million compound libraries, to the SP mode (standard precision) for 
reliably docking tens to hundreds of thousands of ligands with high 
accuracy, to the XP mode (extra precision) where further elimination of 

false positives is accomplished by more extensive sampling and 
advanced scoring, resulting in even higher enrichment. Each step pro-
ceeded with the top 10% from the previous one. The HTVS filtered the 
library to around 1,97,852, SP filtered to around 23, 800 and, XP filtered 
to around 2385 structures respectively.

3.5. In silico ADME/T and toxicity analysis

The docked ligands were screened based on “Golden Triangle” using 
the QikProp module of Schrodinger. Only compounds showing zero 
golden triangle violations were considered for molecular dynamics 
simulation studies. QikProp module of Schrödinger was utilized to es-
timate the physicochemical parameters, SwissADME (Daina et al., 2017) 
was used for medicinal chemistry property predictions, ProTox-II 
(Banerjee et al., 2018) was used for the analysis of the compounds’ 
toxicity, and pkCSM (Pires et al., 2015) server was used in the analysis of 
pharmacokinetic properties and also for the cross-validation of results.

3.6. Molecular dynamics simulation studies

Desmond package was used to carry out the molecular dynamics 
simulations for the FLT3-CNP0099279, FLT3-CNP0347183, and FLT3- 
CNP0298793 complexes. Each system was placed individually in an 
orthorhombic water box of 8 Å using the SPC water model (Alturki et al., 
2022). The ligand-protein complexes were modelled by the OPLS4 force 
field (Lu et al., 2021). Counter ions (Na+) were introduced in the 
ligand-protein complex structures to neutralize the total charge of the 
systems undergoing MD simulation. Furthermore, the energies of the 
systems were minimized to a minimum level using 2000 steps before 
initiating the MD simulation along an NPT lattice trajectory, for 100ns 
each and 310K temperature (Al-Jumaili et al., 2023).

The RMSD primarily suggests the stability of the ligand interaction, 
while RMSF describes the fluctuation and flexibility of the residues 
within the protein, particularly within the active site that is crucial for 
drug discovery. RMSD is calculated by the discovery 

RMSDx =
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RMSF values also help in defining protein structures as they provide 
information about local conformational changes within the protein 
chains. The RMSF values are in units of Å and is calculated by the 
following equation 

RMSFi =
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3.7. Principal component analysis (PCA) and Dynamical cross- 
Correlation Matrix (DCCM) analysis

The trajectory file generated after the MD simulation was first 
extracted as a.cms file. This.cms file was then converted to.dcd format 
with the help of VMD 1.9.3 software (Humphrey et al., 1996). The tra-
jectory.dcd file was subsequently uploaded to the MDM-TASK web 
server to perform PCA and DCCM analysis (Amamuddy et al., 2021). 
PCA was conducted to identify the major conformational changes and 
essential dynamics of the protein-ligand complex, while DCCM analysis 
was used to examine the correlated motions of residues over the simu-
lation period.

3.8. MM-GBSA analysis

The energy parameters generated by the MM-GBSA (Molecular 
Mechanics-Generalized Born Surface Area) simulation were predicted 
using the prime module. This was performed to predict the stabilization 

Fig. 3. The distance between pharmacophore features of the best pharmaco-
phore model, ADRR_2.

Fig. 4. ROC curve represents the pharmacophore validation of the 
model ADRR_2.
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energy levels of potential interactions between the three selected ligands 
and the receptor. VGSB solvation model was used with OPLS4 force field 
(Hong et al., 2024).

Using MD simulations that lasted 100ns, MM-GBSAcalculations to 
determine the binding free energy of protein-ligand complexes was 
done. This method of calculating binding energies proved more reliable 
than using glide scores obtained from molecular docking (Gopal, 2020). 
The key energy components considered in the MM-GBSA calculations 
included hydrogen bond interaction energy, electrostatic solvation free 
energy, Coulomb (electrostatic) interaction energy, lipophilic interac-
tion energy, and van der Waals interaction energy. These factors were all 
taken into account to estimate the relative binding affinity of the 
complexes.

4. Results

4.1. The FLT3 protein

The X-ray crystallographic structure of the FLT3 target protein [PDB 
ID: 6JQR], found at https://www.rcsb.org, in complex with Gilteritinib 
and determined to a resolution of 2.20 Å by Kawase et al. (2019), was 
used in the study.

The FLT3 protein contains several key domains that play distinct 
roles in its function as shown in Fig. 3. The juxtamembrane (JM) loop 
regulates kinase activity, preventing its activation in the absence of 
ligand. The conserved site is essential for protein interactions and sta-
bility. The ATP binding site is where ATP molecules bind, providing the 
energy for kinase activity. The active site is the catalytic center where 
phosphorylation of target proteins occurs. The DFG-Out motif is 
involved in regulating kinase activity and interacting with downstream 
signaling molecules.

Human FLT3 has a length of 993 amino acids and weighs 112.903 
Da, having three components – the extracellular domain with 516 resi-
dues, the transmembrane domain with 19 amino acids, and the cyto-
plasmic domain of 429 amino acids (Ouassaf et al., 2023). To determine 
the structure, the PDBsum web server was utilized; this analysis iden-
tified fifteen α-helices, six β-hairpins, four β-bulges, as well as 12 
helix-helix interactions. Furthermore, the Ramachandran plot was also 
used to validate FLT3, and it indicated that 93.5% of the residues were in 
preferred regions, 6.5% were in additional residue regions, none in 
generous regions, and 0.9% in disallowed regions with a total G-Factor 
of 0.00 (Ramachandran et al., 1963)

4.2. Pharmacophore modelling/screening

The generated pharmacophore models were ranked automatically 
based on the BEDROC Score. The hypothesis ADRR_2 revealed the 
highest PhaseHypo Score of 1.279276 comprising one hydrogen bond 
acceptor (A), one hydrogen bond donor (D), and two aromatic rings (R) 
features.

4.3. Pharmacophore models validation

The ADRR_2 model was applied to a test set database comprising 200 
inactive molecules generated via the DUDE Decoys tool. It screened the 
decoy set to only 16 molecules indicating an efficiency of 92%. Further, 
validation of the ADRR_2 hypothesis revealed that EF in the top 1% of 
the decoy dataset is 3.43%, demonstrating that pharmacophore model is 
6.43-fold efficient in detecting true positives/actives from the entire 
dataset. ROC score, RIE, and AUAC values were calculated as 0.63, 5.19, 
and 0.73, respectively. Thus, ADRR_2 was statistically significant in 
picking the actives from the decoy dataset. Statistical significance of 
model was also validated by calculating BEDROC. Contrary to EF, 
BEDROC seeks to measure the early enrichment of the actives. BEDROC 
values were calculated at different tuning parameter values (α = 8.0, α 
= 20.0, and α = 160.9) and found to be 0.720, 0.844, and 1.000, 

respectively.

4.4. Molecular docking studies

The docking score range for the top 500 hits compounds was found 
between − 19.195 and − 12.678 kcal/mol. The top 3 compounds based 
on docking score, with zero golden triangle violation, i.e., CNP0099279 
(− 16.041 kcal/mol), CNP0298793 (− 14.869 kcal/mol), and 
CNP0347183 (− 14.62 kcal/mol), were selected for further studies.

The ligand CNP0099279 showed diverse interactions with multiple 
ligands in the binding pocket of FLT3. It interacted with Asp829 with its 
H2N via H-bond, Glu661 with H2N and N+H2 vis H-bond and salt bridge 
respectively. It also interacted with Leu689 via H-bond with its OH and 
O, Ile687 with its HO via H-bond, Met625 with O via H-bond, and finally 
Lys623 via H-bonds with two OH groups. The ligand CNP0298793 
showed interactions with 2 residues namely Ala627 and Lys623 via H- 
bonds with OH groups. CNP0347183 showed varying interactions with 
multiple residues viz. Met625 (H-bond with HN, NH, and O), Phe691 (H- 
bond with O), Leu689 (H bond with O and NH), and Glu661 (Salt Bridge 
with H3N+) (see Fig. 5).

4.5. ADME/T predictions

CNP0099279, CNP0298793, and CNP0347183 exhibit diverse mo-
lecular structures and pharmacokinetic profiles, indicative of their po-
tential as drug candidates. CNP0099279 possesses a molecular weight of 
439.180 g/mol, a dipole moment of 5.386, and 11 hydrogen bond do-
nors and 12 acceptors. Its density of 1.068 g/mL suggests a solid-state 
nature. CNP0298793, with a molecular weight of 498.531 g/mol, 
showcases a dipole moment of 9.852, 5 hydrogen bond donors, and 7 
acceptors. CNP0347183, weighing 443.502 g/mol, presents a dipole 
moment of 5.437, 7 hydrogen bond donors, and 10 acceptors. Addi-
tionally, CNP0099279 has 10 rotatable bonds and a nine-atom ring 
system, while CNP0298793 and CNP0347183 have 1 and 13 rotatable 
bonds, respectively.

In terms of drug-likeness, CNP0099279 exhibits moderate water 

Fig. 5. The bioavailability radar plot (obtained from SwissADME) depicting the 
excellent drug-likeliness of the two compounds (The reddish-brown area rep-
resents the optimal range for each property). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of 
this article.)
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solubility (log mol/L = − 2.523) and skin permeability (log Kp =
− 2.735). CNP0298793 demonstrates moderate water solubility (log 
mol/L = − 3.128) and skin permeability (log Kp = − 2.735), with good 
Caco-2 permeability (0.956) and high human intestinal absorption 
(80.681%). CNP0347183 displays moderate water solubility (log mol/L 
= − 2.873) and skin permeability (log Kp = − 2.735), with relatively low 
Caco-2 permeability (− 0.474) and human intestinal absorption 
(27.248%).

Pharmacokinetically, CNP0099279 exhibits low plasma protein 
binding (16.916%) and a moderate volume of distribution (log L/kg =
0.406). CNP0298793 shows high plasma protein binding (97.46%), 
significant distribution throughout the body, and limited CNS penetra-
tion (logBB = − 1.139). CNP0347183 displays low plasma protein 
binding (48.589%) and a moderate volume of distribution at steady 
state (log L/kg = − 0.056), with low permeability across the blood-brain 
barrier (logBB = − 0.8) and into the central nervous system (logPS =
− 4.343). Additionally, CNP0298793 serves as a substrate for P-glyco-
protein and inhibits its activity, suggesting modulation of drug transport 
processes.

4.6. Molecular dynamics simulation

4.6.1. RMSD analysis
Molecular Dynamics simulations of 100 ns time trajectory were 

conducted to study the molecular interactions that underlie the 
CNP0099279, CNP0298793, and CNP0347183 ligands binding in the 
protein pocket 6JQR. The MD simulation trajectories were initially 
composed of the RMSD analysis of each system. The RMSD value for 
6JQR backbone unbound aligned with the RMSD values for 6JQR- 
CNP0099279, 6JQR-CNP0298793 and 6JQR-CNP0347183 complexes.

In Fig. 6, it was observed the backbone atoms of 6JQR protein 
remained almost stable during the 100 ns simulation period for all the 
complexes A and C. For complex 6(B), the backbone of the protein 
increased in the beginning but stabilized from 35ns till the end of the 
simulation. We also observed the convergence in the RMSD values of the 

amino acid residue atoms of free 6JQR protein, indicating good trajec-
tory stability in the complex. The RMSD values of 6JQR- CNP0099279 
complex increased from 2.5 Å at 0.15 ns to 3.39 Å at 32.7ns and were 
then stabilized and averaged 3.25 Å to end of MD trajectory, while the 
RMSD values of 6JQR- CNP0298793 complex went from 2.29 Å for 1.7 
ns to 3.47 Å at 36.9 ns and thereafter these RMSD were not changed and 
stabilized with an average of 3.46 Å till the end of the MD trajectory. The 
RMSD of the complex 6(C), were almost stable all throughout the 
simulation, with very minor fluctuations. The average values of its 
RMSD plot was 2.97 Å.

4.6.2. RMSF analysis
The RMSF computations for the backbone atoms of 6JQR analyzed 

(see Fig. 7). The average RMSF values of the protein backbone was under 
2 Å for all the three complexes. The average RMSF was found to be 1.51 
Å, 1.54 Å, and 1.72 Å respectively for the complexes with ligands 
CNP0099279, CNP0298793, and CNP0347183 respectively. Some slight 
fluctuations were seen at the residues interacting with the ligand atoms.

RMSF values of the atoms of ligands CNP0099279, CNP0298793, 
and CNP0347183 were computed to describe the dynamic behaviour of 
the ligands within the 6JQR protein pocket (see Fig. 8). The data indi-
cate that some fluctuations in ligand CNP0099279 did not exceed 4.75 Å 
for atom number 21, with an average of 2 Å. For the ligands 
CNP0298793, and CNP0347183, the RMSF was maximum for atom 
number 34 and 25 with values of 4.94 Å and 2.65 Å respectively. The 
average RMSF values for these 2 ligands were 3.85 Å and 1.75 Å 
respectively. These slight fluctuations in ligand structures can be 
attributed to the flexible nature of the examined ligands. Nonetheless, 
the molecular structures of both ligands remained stable, with 6JQR 
backbone atoms exhibiting stability over 100 ns in aqueous conditions 
(see Fig. 9).

4.6.3. Protein-ligand contact dynamics
In the present study, it is identified four types of interactions within 

MD simulation: hydrogen bonds, hydrophobic interactions, water 

Fig. 6. The line graph showing RMSD values of the complex structure extracted from ligand fit protein (ligand concerning protein) atoms. (A: CNP0099279; B: 
CNP0298793; C: CNP0347183).
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bridges, and ionic bonds. The timeline interactions of the residues of the 
protein with the ligands are shown in Fig. 10, which shows a stable 
interaction.

The compound CNP0099279 showed significant hydrogen bond in-
teractions with ASP829, GLU661, and LYS623 of our target protein that 
persisted throughout the 100 ns simulation. Furthermore, the com-
pounds CNP0298793, and CNP0347183 showed extensive H-bond in-
teractions with residues MET625, LEU689, ASP829, GLU661, PHE691 
and, CYS695 and ARG815 respectively. CNP0099279 showed additional 
interactions with amino acids such as PHE691 and PHE621 majorly with 

H-bond and hydrophobic interactions. Compound CNP0298793 showed 
additional interactions with residues like LYS623 via water bridge and 
H-bonds, whereas CNP0347183 showed interactions with PHE621 
(majorly hydrophobic), ASP698 (majorly water bridge) and, PHE830 
(majorly hydrophobic and water bridge).

4.6.4. Properties analysis of ligands CNP0099279, CNP0298793, and 
CNP0347183

To validate the high stability of the examined complexes in an 
aqueous environment, we assessed the dynamic properties of ligands 

Fig. 7. The line graph showing RMSF values of the complex structure extracted from protein residues backbone. The peaks of the blue line graph indicate the areas of 
the protein that fluctuate during the simulation. The maroon line graph indicates the B factor. The blue regions represent the alpha-helices and the orange region 
indicates the beta-helices. Protein residues that interact with the ligand are shown in green-coloured vertical lines. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.)
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CNP0099279, CNP0298793, and CNP0347183, which contribute to 
their stable interaction with the 6JQR protein active sites. Fig. S2 (A,B, 
C) summarizes the six examined properties: Ligand RMSD, Radius of 
Gyration (rGyr), Molecular Surface Area (MolSA), Intramolecular 
Hydrogen Bonds (intraHB), Solvent Accessible Surface Area (SASA), and 
Polar Surface Area (PSA) (see Fig. 11).

From Fig S2 (A,B,C), it is observed that the RMSD values of ligand 
CNP0099279, remained generally stable with an average value of 0.88 Å 
till 73ns simulation time. After that, the RMSD showed a spike to an 
average of 2.53 Å, which was again almost stable. The RMSD values 
ranged between 0.44 Å at 18.7 ns and 2.83 Å at 89.6ns. On the other 
hand, the RMSD values of ligands CNP0298793, and CNP0347183 
remained almost stable with an average of 0.76 Å and 1.87 respectively 
throughout the 100 ns simulation, varying between 0.49 Å at 54.4 ns 
and 1.18 Å at 95.5ns for CNP0298793, whereas for CNP0347183 it is 
1.6 Å at 28ns and 2.9 Å at 22ns. The slight variations in RMSD values for 
all the three ligands (<~3 Å) during the 100 ns MD simulation indicate 
the high stability of ligands ZINC000043204001 and 

ZINC000064540314 in the 6JQR protein pocket.
The average stability of rGyr values during the 100 ns MD simulation 

for ligands CNP0099279, CNP0298793, and CNP0347183 is 4.45 Å, 
5.25 Å and 4.98 Å, respectively. The intraHB, MolSA, SASA, and PSA 
plots in Fig. S2 (A,B,C) show good consistency in the dynamics of ligands 
CNP0099279, CNP0298793, and CNP0347183 within the 6JQR protein 
background. The presence of hydrogen bonds in the structures of ligands 
CNP0099279, CNP0298793, and CNP0347183, as indicated by the 
intraHB curves, could enhance the stability of these ligands in the 6JQR 
active pocket.

For the properties MolSA, SASA, and PSA of ligands CNP0099279, 
CNP0298793, and CNP0347183, values were observed in the range of 
(351-390 Å, 415.3–429.5 Å, and 394.8–438.7 Å), (21-218 Å, 
30.6–370.9 Å, and 12.7–164 Å), and (322-396 Å, 231–261.6 Å, and 
263.3–327.9 Å), respectively. These findings further support the sta-
bility of ligands CNP0099279, CNP0298793, and CNP0347183 in the 
6JQR protein environment.

Fig. 8. RMSF of Ligands’ atoms.
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5. Principal component analysis (PCA) and Dynamical cross- 
Correlation Matrix (DCCM) analysis

The PCA plot for CNP0099279 reveals three distinct clusters, indi-
cating that the FLT3-ligand complex transitions between various 
conformational states during the simulation. The well-separated data 
points and clear color gradient show significant shifts in principal 
components (PC1 and PC2), suggesting that the complex spends time in 
stable or semi-stable conformations before transitioning. In contrast, the 
PCA plot for CNP0298793 shows a linear distribution of data points with 
less clustering, suggesting continuous conformational changes rather 
than distinct states. The narrow range on the PC2 axis and gradual color 
gradient imply that CNP0298793 induces a more flexible interaction 
with FLT3, with less defined stable conformations. The PCA plot for 
CNP0347183 displays two noticeable clusters with a continuous distri-
bution between them, indicating at least two conformational states and 
fluid transitions.

The DCCM graph for FLT3 with CNP0099279 displays a mix of 
positive (red) and negative (blue) correlations. Strong positive correla-
tions along the diagonal indicate coordinated movement of neighboring 
residues, while off-diagonal clusters of positive and negative correla-
tions around residues 50–100, 150–200, and 250–300 suggest that 
CNP0099279 stabilizes certain regions but allows flexibility in others. 
The DCCM graph for the FLT3 complex with CNP0298793 shows a more 
uniform pattern of positive correlations, particularly from residues 50 to 
200, indicating that CNP0298793 induces a more rigid and stable 
conformation in FLT3, with fewer and more localized negative corre-
lations. The DCCM graph for CNP0347183 reveals pronounced clusters 
of both positive and negative correlations, with strong positive corre-
lations in residues 0–50, 150–200, and 250–300, and negative 

correlations in other regions.Fig. 12
The DCCM graphs illustrate that CNP0099279 balances stability and 

flexibility by stabilizing some regions while allowing others to be flex-
ible. CNP0298793, on the other hand, induces a more uniformly stable 
structure with reduced flexibility. CNP0347183 stabilizes specific pro-
tein domains while promoting flexibility in others, potentially aiding in 
functional adaptability. These distinct patterns reveal how each ligand 
modulates FLT3’s dynamics, influencing its stability and functional 
interactions.

6. MM-GBSA analysis

The parameters of free binding energies between the ligands were 
evaluated by the MM-GBSA simulations, which is the final step for 
checking the stability levels of the examined systems in the aqueous 
environment. The average values of calculated MM-GBSA energy pa-
rameters are presented in Table S4, containing binding free energies, 
Coulomb energy (Coulomb), Covalent bonding (Covalent), Hydrogen 
bonding (H-bond), lipophilic bonding (Lipo), π-π stacking interaction 
(Packing), solvent generalized bonding (SolvGB), and van der Waals 
bonding energy (VDW) over the 100ns time frame.

From Table S6, the highest ΔGbind Total was shown by 6JQR- 
CNP0298793 Complex with average value of − 80.14 kcal/mol and 
maximum value of − 104.54 kcal/mol with a standard deviation (SD) of 
10.45. The majority of it was contributed by ΔGbind Coulomb (− 29.45 
kcal/mol), ΔGbind Lipo (− 24.92 kcal/mol) and, ΔGbind vdW (− 56.33 
kcal/mol). The next highest average ΔGbind Total was shown by the 
6JQR-CNP0099279 complex and the 6JQR-CNP0298793 complex with 
values − 73.75 kcal/mol (SD = 11.16) and − 70.72 kcal/mol (SD =
11.43) respectively, as depicted in Tables S4 and S5 respectively.

Fig. 9. 2D interaction diagram between protein-ligand complex (A) 6JQR-CNP0099279 (B) 6JQR-CNP0298793 (C) 6JQR-CNP0347183.
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7. Discussion

In this study, we employed in silico methods to discover novel FLT3 
inhibitors for the treatment of acute myeloid leukemia (AML). The crux 
to our approach was the utilization of pharmacophore modelling, 
docking studies, ADMET analysis, molecular dynamics simulations, and 
MMGBSA calculations to assess the potential of identified compounds as 
drug candidates.

Among the compounds analyzed, CNP0099279, a tryptophan alka-
loid obtained from the TCMDB@Taiwan database, exhibits promising 
anticancer potential. This compound falls within the quinoline alkaloid 
class, a group well-regarded for their efficacy in cancer treatment due to 
their versatility in targeting diverse cellular pathways. Quinoline serves 

as an efficient scaffold for anticancer drug development, demonstrating 
efficacy across several mechanisms, such as promoting apoptosis, dis-
rupting cell migration, inhibiting angiogenesis, modulating nuclear re-
ceptor responsiveness, and arresting the cell cycle (Ilakiyalakshmi and 
Napoleon, 2022). Quinoline derivatives have proven effective across a 
range of cancer cell lines, including breast, colon, lung, colorectal, and 
renal cancers. The structural presence of a bromine atom and hydroxy 
group within CNP0099279 further enhances its anticancer potential by 
fostering potent interactions with target proteins (Zhou et al., 2022). 
Studies have shown that quinoline rings substituted at different posi-
tions with various functional groups yield compounds with substantial 
anticancer activities (Mandewale et al., 2017). CNP0298793, a poly-
cyclic aromatic polyketide classified under angucyclines and sourced 

Fig. 10. Interaction fraction histogram between protein-ligand complex (A) 6JQR-CNP0099279 (B) 6JQR-CNP0298793 (C) 6JQR-CNP0347183.

Fig. 11. Standard 2D PCA scatter plot for the simulation trajectory of the complexes (A) 6JQR-CNP0099279 (B) 6JQR-CNP0298793 (C) 6JQR-CNP0347183.
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from the Mitishamba database, exhibits favorable ADMET properties, 
indicating its promise as a drug candidate. Angucyclines are a large 
family of antibiotics derived from Streptomyces bacteria, known for their 
diverse biological activities, including anticancer, antibacterial, anti-
viral, and enzyme inhibitory effects (Korynevska et al., 2007). The 
compound’s structural properties align with these therapeutic roles, 
presenting it as a potent molecule for further anticancer drug develop-
ment. CNP0347183, categorized as a small peptide within the tripeptide 
class and sourced from the GNPS database, demonstrates robust inhib-
itory potential against the FLT3 protein, with particularly strong binding 
energy over a 100ns simulation. This compound exemplifies a 
furan-conjugated tripeptide, a class known to inhibit protease enzymes 
and possess antineoplastic properties. For instance, a related 
furan-conjugated tripeptide, Fur-2-Nal-Ala-Phe-CONH (conjugate 4), 
showed selective activity against human cervical cancer cells (Ali et al., 
2020). The structure and efficacy of CNP0347183 suggest its potential as 
a potent therapeutic agent for inhibiting tumor growth and angiogen-
esis, positioning it as a promising candidate in anti-FLT3 cancer therapy.

The pharmacophore model was rigorously validated to ensure its 
accuracy in predicting activity for novel compounds, whether identified 
through screening or synthesized (Kaserer et al., 2015). Serving as a 
cornerstone in rational drug design, pharmacophore modeling identifies 
essential features required for ligand binding and activity at the target 
site (Choudhury and Narahari Sastry, 2019). Our model, developed from 
a diverse set of confirmed FLT3 inhibitors, incorporated critical steric 
properties, hydrogen bond donor and acceptor groups, and electronic 
attributes. While this model effectively predicted activity across 250 
diverse ligands, reducing the set to 100 could allow a higher pharma-
cophore hypothesis match, enhancing predictive accuracy for potent 
FLT3 inhibitors.Docking studies were conducted to elucidate the inter-
action between identified compounds and FLT3. Our results revealed the 
interaction of the compounds with multiple novel residues of FLT3 like 
E661, L829, and M625, suggesting potential binding modes and high-
lighting possible residues for further in vitro validation. Notably, these 
interactions could represent novel ways of targeting FLT3 residues, 
which are crucial for the discovery of new inhibitors (Gokhale et al., 
2019). It is essential to emphasize that while molecular docking was 
traditionally favored for predicting receptor-ligand interactions, 
MM-GBSA now offers enhanced accuracy by incorporating binding free 
energies that better correlate with empirical lab data (Satuluri et al., 
2020; Taylor and Ho, 2023). This improved precision stems from 
MM-GBSA’s ability to consider dynamic molecular interactions, 
including solvation effects, entropic factors, and the flexibility of ligands 
and target proteins.

Aspartate residues are integral to the catalytic mechanisms of ki-
nases, coordinating essential metal ions like magnesium for ATP binding 
and hydrolysis. Inhibitors targeting these residues disrupt phosphory-
lation by forming hydrogen bonds and ionic interactions that enhance 

binding affinity, thus increasing inhibition potency (Roskoski, 2024; 
Smyth and Collins, 2009). Glutamate residues are critical for catalytic 
activity, acting as proton donors or stabilizers during ATP hydrolysis, 
and they influence the enzyme’s conformation and interactions with 
substrates and inhibitors (Szabo et al., 2008). Leucine, a hydrophobic 
amino acid, stabilizes the three-dimensional structure of kinases and can 
enhance inhibitor binding through hydrophobic interactions, while also 
modulating the activation state to favor inactive conformations (Arter 
et al., 2022). Isoleucine residues maintain the conformational stability 
and active site configuration of kinases, affecting substrate binding and 
catalysis, which is vital for effective inhibition (Garske et al., 2011). 
Methionine residues contribute to structural integrity and functional 
dynamics, facilitating critical interactions within the active site; in-
hibitors targeting methionine can enhance selectivity among kinase 
family members, minimizing off-target effects (Bhullar et al., 2018). 
Finally, the catalytic lysine residue, evolutionarily conserved and less 
prone to mutation, is of interest for developing covalent kinase in-
hibitors aimed at improving specificity within the ATP pocket (Nishal 
et al., 2022; Serafim et al., 2023).

ADMET analysis of the identified compounds indicates that 
CNP0298793 demonstrates superior pharmacokinetic properties, posi-
tioning it as a strong candidate for further development. Its high plasma 
protein binding and significant body distribution suggest that it is well- 
suited for systemic administration, with the added benefit of minimized 
central nervous system (CNS) effects (Yue and Shen, 2023). However, its 
role as a P-glycoprotein substrate and inhibitor raises considerations 
regarding its impact on drug transport across cellular barriers, which 
could influence co-administration with other medications (Kan et al., 
2022). In contrast, CNP0099279’s moderate water solubility and skin 
permeability suggest favorable absorption characteristics, coupled with 
a low risk of systemic accumulation, making it an attractive option for 
therapeutic applications (Chen et al., 2024). CNP0347183, however, 
exhibits limited systemic distribution owing to its lower human intes-
tinal absorption and CNS permeability, which may restrict its efficacy to 
localized therapeutic contexts (Kwak et al., 2013). Collectively, these 
findings underscore the diverse pharmacokinetic profiles of the com-
pounds, highlighting their potential for varied therapeutic applications 
and the need for careful consideration of their unique properties in drug 
development.

Molecular dynamics simulations provided valuable insights into the 
stability of protein-ligand complexes over time. Compounds 
CNP0298793, CNP0347183, and CNP0099279 demonstrated minimal 
fluctuations in protein root mean square deviation (RMSD) and root 
mean square fluctuation (RMSF), indicating stable interactions within 
the FLT3 active site. None of the RMSD values of all systems exceeded 
the 4 Å threshold, suggesting a likely stability of these ligands inside the 
protein active pocket (Kufareva and Abagyan, 2011). Furthermore, the 
efficacy, selectivity, and side effects of a drug candidate depend on 

Fig. 12. DCCM graph for the simulation trajectory of the complexes (A) 6JQR-CNP0099279 (B) 6JQR-CNP0298793 (C) 6JQR-CNP0347183.
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various factors, with protein-ligand interactions being of paramount 
importance. These interactions, including hydrogen bonds, hydrophobic 
bonds, water bridge bonds, and ionic bonds, contribute to the com-
pound’s potency and selectivity, as highlighted by Fu et al. (2018). 
Strong interaction fractions (>1.5), particularly those involving residues 
such as Asp829 and Met625 with compound CNP0099279 and 
CNP0347183 respectively, having significant H-bond interactions, were 
observed indicating strong and stable binding to the protein, potentially 
inhibiting its activity. MMGBSA analysis reaffirmed the favorable 
binding energies of all three compounds, positioning them as promising 
drug candidates against FLT3, and presenting a comprehensive in silico 
approach for the discovery of novel FLT3 inhibitors in AML. The com-
pound CNP0347183 exhibit the best binding energy over 100ns 
simulation.

PCA analysis reveals that CNP0099279 stands out as the most stable 
and likely strongest candidate, inducing conformational states that 
enhance its inhibitory potential, consistent with effective kinase inhi-
bition mechanisms (Outhwaite and Seeliger, 2023). DCCM results 
further confirm that it balances structural integrity with functional 
flexibility, improving FLT3’s response. CNP0347183 exhibits a favor-
able balance of stability and flexibility, crucial for inhibitor efficacy 
(Feixas et al., 2013), with DCCM correlations suggesting it stabilizes 
specific domains while allowing for adaptability (Raubenolt et al., 
2022). In contrast, CNP0298793 may need modifications, as its PCA 
indicates significant flexibility and a lack of stable conformations, which 
could lower its efficacy, aligning with the need for conformational sta-
bility (Outhwaite and Seeliger, 2023). DCCM analysis shows uniform 
positive correlations that imply a rigid conformation, enhancing struc-
tural integrity but potentially limiting inhibitory potential, supporting 
findings that rigidity can improve inhibitor affinity.The promising 
pharmacological properties of the positions the compounds for further 
investigation through in vitro and in vivo studies for potential clinical 
translation.

8. Conclusion

Our study employs a comprehensive computational framework to 
investigate novel FLT3 inhibitors sourced from natural compounds, 
leveraging the COCONUT database for structure-based drug discovery 
using pharmacophore modelling and screening, molecular docking, 
ADMET and subsequent molecular dynamics simulations. Through 
rigorous docking studies using HTVS, SP, and XP docking approaches, 
we identified potential inhibitors exhibiting high affinity towards FLT3. 
Among them, ligands CNP0099279, CNP0298793, and CNP0347183 
emerged as top candidates with the highest docking scores, suggesting 
their strong binding affinity to FLT3.

To understand the molecular mechanisms underlying their inhibi-
tory effects, we performed molecular dynamics simulations over a 100 
ns trajectory. Our analysis revealed that ligands CNP0099279, 
CNP0298793, and CNP0347183 form stable complexes with FLT3, as 
evidenced by their consistent RMSD values throughout the simulation 
period. Notably, interactions with key residues such as Met625, Leu689, 
Glu661, and Asp829 were observed, highlighting their pivotal role in 
stabilizing the ligand-protein complexes.

Furthermore, our study underscores the importance of elucidating 
the detailed molecular mechanisms of these compounds in exerting AML 
tumor-suppressive effects. The identification of novel residues targeted 
by these inhibitors opens avenues for further exploration and validation.

Moving forward, it is imperative to conduct extensive in vitro and in 
vivo validation studies to confirm the efficacy and safety profiles of 
CNP0099279, CNP0298793, and CNP0347183. Additionally, detailed 
mechanistic studies are warranted to elucidate the precise mode of ac-
tion and downstream signalling pathways affected by these inhibitors.
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