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Abstract

Objectives: To characterise small-area geographical variation in the prevalence of diabetes in Australian youth.

Methods: A combined statistical reconstruction and small-area estimation algorithm was applied to privacy-modulated data from the 2021
Australian Census. The census instrument and reconstruction accuracy was examined by comparisons against a hospital-based register and

community register. Diabetes prevalence maps were created from the small-area estimates.

Results: The median and interquartile range of estimated diabetes prevalence by small-area unit under our geospatial smoothing model were

1.76 [1.49–1.97] cases per 1000 population for those aged 0–14 years and 5.2 [4.4–5.9] cases per 1000 population for those aged 15–19 years

old. Concentrations of elevated prevalence were identified in the vicinities of regional towns across South-East Queensland, regional New

South Wales and regional Victoria. Across each of Australia’s five largest cities a gradient of decreasing youth diabetes prevalence from the
outer suburbs to the urban centre was identified.

Conclusion: Diabetes burden is systematically higher among rural and peri-urban resident youth in Australia compared with their urban

counterparts.

Implications for Public Health: Hotspots of prevalence in regional areas deserve attention from public health authorities.

Key words: diabetes mellitus, type 1—juvenile-onset diabetes, epidemiologic factors, spatial regression
Introduction
S
patial analyses of variation in disease burden can offer valuable

insights for epidemiologists and public health policymakers.1

Geostatistical demarcations of high and low burden areas can

serve to test and/or generate hypotheses regarding environmental
risk factors and may also guide decision-making towards the

improved alignment of service provision with community needs and

the reduction of health inequalities.2

International variations in the incidence rate of type 1 diabetes were

early signifiers of the role of genetic susceptibility and environmental

factors such as vitamin D sufficiency in this autoimmune disease.3,4

Sub-national variations in type 1 diabetes burden have also been

used to explore the ‘hygiene hypothesis’: namely, the proposition that

stimulation of the immune system by exposure to common infections
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in early life has a protective effect.5 Spatial regression analyses in

Northern Ireland and Spain have reported higher incidences in

sparsely populated, rural areas and lower incidences in more densely
populated, urban areas,6,7 but the opposite has also been observed in

Western Australia.8 Small-area analyses of type 2 diabetes cases in

Germany and the United States have revealed a strong relationship

with obesity and area deprivation9 and no relationship with

outdoor air pollution.10

A lack of nationally representative data with fine-scale geographical

specification has been a limiting factor for small-area spatial analyses

of the diabetes burden in Australia. The aforementioned study in

Western Australia was based on the Western Australian Children's

Diabetes Database (WACDD). The WACDD was established in 1987 at

the Princess Margaret Hospital (now Perth Children’s Hospital) and

continues to collect information on all consenting patients attending
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the hospital-based diabetes clinic, which is the only such facility in the

state. The completeness of the WACDD has been estimated at over

99% for type 1 and over 70% for type 2 by capture-recapture

methods.11,12 The overwhelming concentration of Western Australia’s

population in the southwest of the state limits the power of this
dataset for identifying the demographic and environmental factors

influencing spatial variation.

At the national level, there is the voluntary register of the National

Diabetes Services Scheme (NDSS), which is estimated to hold

information on 80–90% of Australians with insulin-treated diabetes.13

Censored counts of registrants in ten-year age groups are made

publicly available across variety of spatial unit systems with the

smallest being the postcode level; censoring is applied where there
are fewer than 20 registrants in an area unit and thus most heavily

impacts the postcode level dataset. A recent spatial analysis of all-age

type 2 diabetes using the NDSS encountered missing data due to

censoring across 26% of Australian postcodes.14

In 2021, a new question on chronic health conditions was added to

the Australian Census with diabetes included among a list of disease-

specific response items. The Australian Census is a whole-of-

population survey and the overall response rate for the long-term
health conditions question was 91.9%.15 Data summaries and insights

from the Australian Census are made available to researchers by the

Australian Bureau of Statistics (ABS) through the TableBuilder

platform. The geographical subdivisions of this dataset include those

of the Australian Statistical Geography Standard (ASGS), which form a

nested hierarchical system spanning a wide range of spatial scales.

Although noise injection and low-count suppression are applied with

TableBuilder to protect respondent privacy,16 the nested structure of
the ASGS hierarchy may be leveraged to achieve effective statistical

reconstruction at the finest scales with modern Bayesian methods.17

The analysis of the 2021 Australian Census thus offers an

unprecedented opportunity to explore small-area spatial trends in

youth diabetes prevalence across the whole of Australia.

Methods

Diabetes datasets

Age-structured counts of persons by diabetes status—across the

three categories of the Australian Census 2021 diabetes item (HDIAP):
‘Has diabetes (excluding gestational diabetes)’, ‘Does not have

diabetes (excluding gestational diabetes)’ and ‘Not Stated’—were

extracted from the ABS TableBuilder platform. It is important to note

that this question does not distinguish between type 1 and type 2

diabetes. Queries were made at each of the ASGS subdivisions from

SA1 (approximately 200–800 people) to SA4 (over 100,000 people), as

well as the state/territory and National totals. Summaries of HDIAP

class counts by socioeconomic status (‘Index of Relative
Socioeconomic Advantage and Disadvantage’ decile; IRSAD) and

remoteness (Remoteness Area: five categories) were also requested.

Demographic filtering was applied in TableBuilder to select residents

in each of the three age groups: 0–9, 10–14 and 15–19 age. These

Census extracts represent the primary dataset against which we apply

our statistical reconstruction and small-area estimation procedures.

For comparison purposes, counts by SA3 unit of children diagnosed
with type 1 or type 2 diabetes aged 0–9 and 10–14 years old as of the

2021 Census month of August were extracted from the WACDD. The

authors’ access to this dataset for research purposes was approved by
the Child and Adolescent Health Service Human Research Ethics

Committee, Western Australia (RGS0000002386). Also for comparison

purposes, counts of insulin-dependent diabetes registrants were

extracted from the NDSS Diabetes Map tool in the two available age

groups of 0–9 and 10–19 year of age at the Local Government Area
(LGA) spatial scale, along with the state/territory totals. In addition to

the censoring of counts below 20, a rounding of all counts to the

nearest ten is applied in the NDSS map to further safeguard registrant

privacy.18

Statistical model

Reconstruction of the true Census counts by HDIAP category

proceeded under a Bayesian model-based algorithm; the
development of this algorithm and its performance against simulated

data are described in depth in an earlier manuscript.17 In brief, a

Markov Chain Monte Carlo procedure was used to explore the range

of true cell counts consistent with the available TableBuilder outputs

in each ASGS unit system (SA1, SA2, SA3, SA4, and STE), as well as the

socioeconomic and remoteness categories, under a simple model for

the TableBuilder perturbation process. A blocked Gibbs sampling

scheme was applied within this algorithm to achieve feedback against
a geospatial smoothing model for the proportion positive. A full

mathematical description of the smoothing model and details of its

computational implementation are given in the Supplementary

Information and we summarise only its key features below.

The expected proportion of children with diabetes in each SA1 unit in

the youngest and oldest age groups 0–9 and 15–19 years old is

modelled separately under a logit transform as the sum of a constant

intercept term, a socioeconomic effect, a remoteness area effect, and
a spatial random field; the latter encodes the geographical

assumption that nearby areas are likely to have similar prevalence.

The expected proportion of children and early adolescents with

diabetes aged 10–14 years old in each SA1 area is modelled as a

mixture of the models for the youngest and oldest age groups with

the mixing proportion treated as a parameter to be learned during

model fitting. Areal aggregation matrices built from ABS

correspondence tables connect the reconstructed SA1 totals and
expectations to their WACDD and NDSS counterparts at the SA3 and

LGA levels for post-fit comparisons.

Data processing and statistical analysis were performed using R

(version 4.4.0) with Template Model Builder and the Integrated

Nested Laplace Approximation (the ‘TMB’ and ‘INLA’ packages). The R

code and TMB file used for this analysis are made publicly available

online at https://github.com/drewancameron/diabetesmodel .

Results

Fidelity of the ABS Census Data with the WACDD and NDSS

For Western Australia (queried at the State level) TableBuilder reports

totals of 302, 498 and 712 respondents answering in the affirmatively

to the diabetes prompt under the long-term health conditions

question in the age groups of 0–9, 10–14 and 15–19 years old,

respectively. In comparison the WACDD register lists totals of 285 (284

type 1; 1 type 2) and 384 (360 type 1; 24 type 2) children aged 0–9

and 10–14 years old as of the date of the Census 2021. The NDSS
queried (in October 2023) at the state/territory level reports 310 and

1410 registrants aged 0–9 and 10–19 years old, respectively. The

closest agreement between the three datasets is thus for the

https://github.com/drewancameron/diabetesmodel
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youngest age group, and we note that these cases are expected to be

almost exclusively type 1 diabetes. For older children and young

adults the differences are more substantial: the WACDD count for

10–14-year-old children is only 77% of that in the Census and the

Census 10–19-year-old youth total (1210) is only 86% of the
corresponding NDSS total. Double registration of individuals who

change states of residence was noted as a potential problem for the

NDSS dataset in a report prepared by the AIHW,19 along with the

missing data of those self-managing type 2 diabetes through diet and

exercise; however, this report was prepared in 2009 and data quality

may well have improved since then.

In Panel A of Figure 1, we present graphical comparisons of the

counts of 0–9-year-old children with diabetes by SA3 unit according

to ABS TableBuilder and the WACDD register. Note that the ABS areal

unit membership is based on the current place of usual address at the

time of the 2021 Census, while that in the WACDD is based on patient

address at time of diagnosis. In Panel B, we repeat this comparison

using our reconstructed counts based on the ABS data extracted
across all ASGS spatial scales. The impact of the reconstruction

procedure is seen where non-zero values are imputed for some SA3

units that had zero TableBuilder outputs. Likewise, the counts

assigned to some of the SA3 units that had non-zero TableBuilder

outputs are curbed through the effect of Bayesian shrinkage. The

reconstructed estimates are marked as points at their posterior

median estimates with error bars indicating their corresponding 95%

credible intervals. The correlation coefficient between the WACDD
counts and the raw TableBuilder outputs is 0.88, and that between the

WACDD count and the reconstructed counts is identical.

In Figure 2 we present maps comparing the NDSS reports by LGA

against those from our reconstruction of the ABS Census data for
youths aged 0–9 and 10–19 years old, respectively. The impact of

drop-out due to censoring of counts less than 20 from the NDSS map

is evident, with the ABS Census identifying non-zero case counts in
Figure 1: Counts of children with diabetes aged 0–9 years old by SA3 unit in the A
against which the SA3 unit is assigned is that of residence at the time of survey for th
ABS Census datum used in the comparison is the raw (i.e., noise-injected and low
median count and 95% credible interval produced under our statistical reconstructio
many LGAs in both age groups. For the younger age group most of

these LGAs where suppression is inferred to have removed significant

case counts lie on the east coast, while for the older age group there

are also large portions of the sparsely populated Northern Territory

where count suppression has been impactful. We have highlighted in
Figure 2 those LGAs where the posterior 95% credible interval of case

counts from the ABS Census reconstruction does not include the

NDSS map value; totals of 12 (2.1%) and 63 (11%) LGAs for children

aged 0–9 years old and children and adolescents aged 10–19 years

old, respectively.

Comparing the ABS Census totals against those from the NDSS map at
the state/territory level for the 0–9-year-old age group we have 766

(ABS) vs 830 (NDSS) for New South Wales, 689 vs 750 for Victoria, 560

vs 570 for Queensland, 302 vs 310 for Western Australia, 193 vs 190

for South Australia, 71 vs 80 for Tasmania, 20 vs NA (0) for the

Northern Territory and 44 vs 50 for the Australian Capital Territory.

The equivalent comparison for the 10–19-year-old age group is 3494

(ABS) vs 3770 (NDSS) for New South Wales, 2746 vs 3080 for Victoria,

2505 vs 2970 for Queensland, 1210 vs 1410 for Western Australia, 887
vs 980 for South Australia, 272 vs 310 for Tasmania, 144 vs 160 for the

Northern Territory and 211 vs 220 for the Australian Capital Territory.

For the younger age group the overall total from the ABS (excluding

the Northern Territory) is 94.4% of that from the NDSS, and for the

older age group the corresponding proportion is 88.9%.

Estimated spatial variation in childhood diabetes
prevalence

Under our small-area Bayesian geospatial smoothing model fit to the

Australian Census 2021 dataset, we recover posterior median

prevalences of 1.76 and 5.24 cases per 1000 population across SA1
units for Australian children and early adolescents aged 0–14 years

old for and adolescents aged 15–19 years old, respectively. The

corresponding inter-quartile ranges across SA1 units are 1.49–1.97
BS Census 2021 compared against those in the WACDD. The address information
e ABS Census and in the WACDD it is residence at time of diagnosis. In Panel (a) the
count suppressed) TableBuilder output while in Panel (b) we show the posterior
n algorithm.



Figure 2: Counts of youths with diabetes by LGA unit in the NDSS (2023) compared against those from reconstruction of the ABS Census 2021. The comparison for
children aged 0–9 years old is made between Panels (a) and (b), while that for children and adolescents aged 10–19 years old is made between Panels (c) and (d). The
ABS Census datum used in these comparisons is the posterior median count from our statistical reconstruction procedure. A number of LGAs that were identified as
outliers in testing of the posterior 95% credible interval of our statistical reconstructions against the reported NDSS values are highlighted with magenta borders.
Suppressed NDSS outputs (where there are less than 20 registered children in that LGA) are plotted as zero counts here.
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and 4.4–5.9 cases per 1000 population. The spatial pattern of diabetes

prevalence is illustrated for the 0–14 year old age group in Figure 3
and for the 15–19 year-old-age group in Figure 4. To convey the level

of uncertainty in these estimates we assign SA1 units to categories of

lower and higher confidence. Higher confidence is defined here as a
prevalence estimate for which the posterior standard deviation is less

than 25% of the median prevalence.

The highest prevalence SA1 units for Australian children and early

adolescents aged 0–14 years old are located in regional and peri-
urban areas of the eastern States. ‘Hotspots’ appear across South-East

Queensland and across regional New South Wales and regional.

Elevated risk is also seen in the outer suburbs and satellite towns of

the major cities. Conversely, the urban centres of Australia’s largest

cities are identified as having substantially lower diabetes prevalences

than their peri-urban surrounds. These spatial trends are closely

reproduced, albeit at higher prevalences, in the 15–19 years old age

group, but with one notable change: new areas of very high
prevalence areas appear across the remote areas of the centre and

north of Australia.
It is important to note is that the trends of increasing diabetes

prevalence with decreasing socioeconomic status for 0–14 year olds,

and additionally with increasing remoteness for 15–19 year olds,

evident in Figure 3 and Figure 4 are consistent with the summary data

extracted along these dimensions from ABS TableBuilder and with the
posterior estimates of the socioeconomic status and remoteness index

effects in our model (reported in the Supplementary Information).

Discussion

The inclusion of a long-term health conditions question for the first

time within the Australian Census 2021 offers many new

opportunities for the study of disease burden. In this analysis we have

used statistical reconstruction and model-based inference procedures

to characterise, for the first time, the small-area geographical variation

in youth diabetes prevalence across Australia. We have thereby

revealed a number of regional ‘hotspots’ of elevated prevalence

around the country and have demonstrated a substantial gradient of
decreasing prevalence from the peri-urban surrounds to the urban

centres of Australia’s five largest cities.



Figure 3: Posterior mean prevalence of diabetes among Australian children and early adolescents aged 0–14 years old by SA1 unit under our geospatial regression model.
In addition to the national scale map, we highlight in panels the pattern surrounding each of Australia’s five largest cities.
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A note on the statistical model and dataset

Before reflecting further upon these results, it is important to note the

expected impacts of the statistical model chosen for this analysis on

the patterns in the disease maps so constructed. The use of spatial

random fields within a Bayesian framework for smoothing and

interpolating between noisy observations indexed to geographical
locations or areal units is known as ‘model-based geostatistics’.20 The

role of the random field component is to encode the geographical

expectation that nearby locations will have similar demographic and

environmental characteristics and therefore have similar levels of

disease risk. The tendency of such models is to ‘shrink’ each area’s

prevalence estimate towards a common mean, except where the data

from neighbouring areal units substantively and collectively trend

above or below the mean. However, this effect operates in practice
only on residual variation not explained by our socioeconomic status

and remoteness area effects, which themselves operate to ‘shrink’

estimates towards similarity along these dimensions of the dataset.
The patterns that result in our maps are thus both a product of the
data and the choice of model.

By restricting our model to the interaction between socio-economic

status and remoteness effects without adding other covariates such

as climatic variables we have created a parsimonious model that

focuses estimation power on the intersection between these two

fundamental stratifications of the Australian population. However, the

posterior median maps we present clearly contain the imprint of this
model structure and the true risk surface may in fact be more spatially

smooth than this. At the same time, the spatial smoothing of the

residual variability is conservative in terms of identification of

‘hotspots’ that do not align with socioeconomic or remoteness area

trends. Hence, while we are confident in the existence of the

‘hotspots’ we have identified we caution that others may exist that are

not discoverable with our choice of model and the current dataset.

Since the Australian Census dataset does not distinguish between

type 1 and type 2 diabetes we refer to our model-based outputs



Figure 4: Posterior mean prevalence of diabetes among Australian adolescents aged 15–19 years old by SA1 unit under our geospatial model. In addition to the national
scale map, we highlight in panels the pattern surrounding each of Australia’s five largest cities.
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simply as maps of childhood and adolescent diabetes. For children
aged 0–9 years old we expect that the cases counted will be almost

entirely type 1 diabetes, while for the older children and adolescents

there will be a modest contribution from type 2 diabetes cases. While

data on type 2 diabetes prevalence amongst Australian adolescents is

limited, a recent study from the United States 21 offers insights into

the probable fraction of cases here, with those authors reporting type

2 to type 1 ratios of 1:13 and 1:4.5 for the 10–14 and 15–19 years old

age groups, respectively. Our decision to combine 0–9 and 10–14 year
olds into one group and map these separately to the 15–19 years old

age group was motivated by this expectation that the type 2 cases

will likely only start to influence the fitted spatial pattern for this

oldest age group. In our model, we included a free parameter to

allowed the fitted prevalence for the 10–14 year old age group to be

represented as a mixture between that of the 0–9 and 15–19 year old

age groups, and the fitted parameter value of 98% (93-99%) strongly

favoured the younger age group.
Explaining the differences between datasets

While close agreements were observed between the case numbers in

each dataset for children aged 0–9 years old there were notable

discrepancies for the older age groups. The difference between the

Census count for children aged 10–14 years old in Western Australia

(498) and the WACDD count (384) is most likely due to missingess of
community-managed type 2 cases in the WACDD. Completeness of

type 1 diabetes case capture in the WACDD has been statistically

estimated at 99.9% in a 2018 study11 and this estimate is thought to

remain accurate since Perth Children’s Hospital is the only youth

diabetes clinic in the State and all new onset cases are referred to the

clinic. The completeness of type 2 diabetes case capture in the

WACDD was previously estimated at 73% based on comparison with

the NDSS over the period 1999–201612 but it is possible this may have
declined if screening and community-management has increased,

particularly in remote locations. A study of 2016–2017 register data

from primary healthcare services in Indigenous communities revealed
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very high prevalence rates of type 2 diabetes favouring the

hypothesis of significant under-ascertainment in hospital-based

registers.22 New screening and diagnosis guidelines designed to

improve type 2 diabetes case detection have also been recently

proposed by the Australasian Paediatric Endocrine Group.23

The differences in case counts for 10–19 years olds at the state/

territory level in the Census compared with the NDSS (e.g. 1210 vs

1410 for Western Australia) are presumed to be the result of non-

response in the census. The average non-response rate for the long-

term health conditions question is 8.1%.15 However, this varies with

population characteristics with higher non-response rates amongst

low socioeconomic status and indigenous cohorts; both of which are
also at elevated risk for type 2 diabetes. Exposure to non-response

bias is thus a limitation of the present study with its possible impact

being the non-detection of some additional high risk clusters.
Explaining the spatial variation of childhood diabetes in
Australia

The evidence presented here for a gradient of decreasing childhood

diabetes towards the centres of our five largest cities is consistent

with the results from multiple overseas studies; notably those small-

area analyses from Northern Ireland6 and Spain7 mentioned in the

Introduction. These trends are produced by a combination of the
socio-economic effect (increasing prevalence with decline low socio-

economic status) and the spatial random field in our model. At face

value these trends could be explained by one aspect of the so-called

‘hygiene hypothesis’ whereby those living in densely populated

urban centres would likely be exposed to an increased number of

childhood infections resulting in a reduced risk of immune-mediated

conditions in later life.5 However, the socio-economic effect also

holds outside of these urban areas, with risk notably being higher in
the regional towns of the eastern States than in their surrounding

countryside.

As summarised in a recent literature review,24 the results of overseas

studies examining the relationship between socioeconomic status

and type 1 childhood diabetes risk show a variety of outcomes but

overall offer little evidence for a consistent socioeconomic effect. The

socioeconomic effect recovered in this study reproduces the empirical
trend with socio-economic status seen in the ABS Census data for

each age group (including that of 0–9 year olds which is expected to

be almost entirely determined by type 1 diabetes) and indicates that

it cannot be explained by confounding between remoteness and

socio-economic status.

The regional areas where ‘hotspots’ of elevated prevalence were

identified in our analysis include towns and cities with documented
socio-economic factors, such as food insecurity,25 representative of

risk under the ‘overload hypothesis’ for type 1 diabetes. Namely, that

a high growth rate and/or stress in early life can overload the

pancreatic beta cells and accelerate the development of auto-

immune conditions.26 Again, however, there are significant spatial

variations in population demographics (in particular, with regard to

ancestry and Indigeneity that also covary spatially which must temper

our interpretation of the maps presented here. Also worth noting is
that there may be socio-economic and/or remoteness trends in

diagnosis rates for type 2 affecting the older age group that

contribute to shaping the observed trends.
Possibilities for further insights with additional datasets

Given the relative rarity of childhood diabetes, complementary data

will be required to power deeper investigations of the explanatory

factors behind the spatial patterns observed here. Ideally, de-

identified data with geographical, socioeconomic and demographic

variables attached at the individual level rather than in aggregate as

small-area counts to side-step the ‘ecological fallacy’,27 and with

precise times of diagnosis to assist with causal attribution.28 The

WACDD meets both of these criteria and is continuing to gather data,
yet its spatial coverage is restricted to Western Australia. Researchers

with access to individual-level data gathered by the NDSS or the

multi-centre Australasian Diabetes Data Network (ADDN29) may also

have the opportunity to contribute to the understanding of spatial

variation, although no geographical analyses of non-public data from

datasets have yet been published. Assuming that the long-term

health conditions question is retained for the next Australian Census

in 2026 we intend for the present results to serve as a benchmark
against which we will search for any changes in the overall level of

childhood diabetes prevalence and its spatial patterns.

Addressing service needs in peri-urban and regional
communities

A recent investigation surveying patients at 38 tertiary and regional

Australian and New Zealand paediatric clinics caring for children with
diabetes30 determined that over half of all study participants had

glycaemic outcomes below recommended levels. However,

management of childhood diabetes is challenging for many reasons

and sub-optimal glycaemic outcomes at similar rates have also been

observed in children from the urban-dominated ADDN network.31

Regional health care providers face unique challenges for service

delivery, including a lack of specialist practitioners and general under-

staffing problems,30 though effective models of care have been
developed in this setting.32 Youths living outside of major urban

centres in Australia have historically faced greater impacts of diabetes

management on their life satisfaction at a similar level of glycaemic

control.33 A recent study focussed on Australian adults in rural and

remote settings reports encouraging results that that the level of

services provided by multidisciplinary primary may be effective in

compensating for the limited access to specialist care.34 In light of the

concentration of diabetes childhood ‘hotspots’ in regional areas it is
also reassuring that the intra-national variation of treatment delivery

for diabetes remains an active topic of research in Australia.35

Conclusions

We have successfully applied a statistical modelling procedure to

derive novel small-area estimates of the geographical variation of

youth diabetes prevalence across Australia from the 2021 Australian

Census dataset. ‘Hotspots’ of elevated prevalence were identified in a

number of regional areas, while lower prevalences were determined

in the inner city zones of Australia’s largest cities.
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