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A B S T R A C T

The dose-response relationship between dietary sugar and type 2 diabetes (T2D) risk is uncertain. MEDLINE, Embase, CINAHL, Web of
Science and Cochrane databases were searched through July 9, 2024 for prospective cohort studies reporting relative measures of incident
T2D risk by categories of dietary sugar (total, free, added, fructose, sucrose) or 2 beverage sources (non-diet sugar-sweetened beverages
[SSBs], fruit juice) in healthy adults. Linear and restricted cubic spline dose-response models were fitted for each exposure, and study-
specific slopes and confidence intervals (CIs) were calculated. Heterogeneity was evaluated using Q-statistics. Risk of bias was evaluated
using the Risk of Bias in Non-randomized Studies of Exposures (ROBINS-E) tool. The Grading of Recommendations Assessment, Develop-
ment and Evaluation (GRADE) approach was applied to assess the certainty of evidence. Of 10,384 studies, 29 cohorts were included: SSB:
18 (n ¼ 541,288); fruit juice: 14 (n ¼ 490,413); sucrose: 7 (n ¼ 223,238); total sugar: 4 (n ¼ 109,858); fructose: 5 (n ¼ 158,136); and added
sugar: 2 (n ¼ 31,004). Studies were conducted in Europe (13), United States (11), Asia (6), Australia (4), and Latin America (3). Each
additional serving of SSB and fruit juice was associated with a higher risk of T2D (risk ratio [RR]: 1.25; 95% CI: 1.17, 1.35 and RR: 1.05;
95% CI: >1.00, 1.11, respectively; moderate certainty). In contrast, 20 g/d intakes of total sugar and sucrose were inversely associated with
T2D (RR: 0.96; 95% CI: 0.94, 0.98; low certainty; and RR: 0.95; 95% CI: 0.91, <1.00; moderate certainty, respectively). No associations
were found for added sugar (RR: 0.99; 95% CI: 0.96, 1.01; low certainty) or fructose (RR: 0.98; 95% CI: 0.83, 1.15; very low certainty).
These findings suggest that dietary sugar consumed as a beverage (SSB and fruit juice) is associated with incident T2D risk. The results do
not support the common assumption that dietary sugar (i.e., total sugar and sucrose), irrespective of type and amount, is consistently
associated with increased T2D risk.
This study was registered in PROSPERO as CRD42023401800.
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Statement of significance

This study is the first to comprehensively establish a dose-response relationship between dietary sugar intake and type 2 diabetes risk, showing

that sugar from beverages (sugar-sweetened beverages and fruit juice) increases risk, whereas total sugar, sucrose, fructose and added sugar
exhibit inverse or null associations. These findings challenge the assumption that all sugars uniformly elevate type 2 diabetes risk.
Abbreviations: CI, confidence interval; DNL, de novo lipogenesis; DRM, dose-response meta-analysis; GRADE, Grading of Recommendations Assessment, Devel-
ment and Evaluation; RR, risk ratio; SSB, sugar-sweetened beverage; ROBINS-E, Risk of Bias in Non-randomized Studies of Exposures; T2D, type 2 diabetes.
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Introduction

Reducing the growing public health burden of type 2 diabetes
(T2D) has become a key global health priority [1]. The intake of
dietary sugars is often linked to the development of T2D, but
inconsistencies remain based on the type, source, and amount of
sugar [2]. Extensive pooled evidence has shown that
sugar-sweetened beverages (SSBs) are adversely related to T2D
risk [3,4]. Public health recommendations for reducing sugar
intake predominantly stem from research focused on SSBs, given
how readily measurable their consumption is and the
well-documented link of SSB intake to T2D. Although this focus
on SSBs is important due to their high consumption in United
States diets [5] and their concentrated sugar content, it leaves a
significant gap in understanding the dose-response relationship
between other types of dietary sugar intake, such as total sugars,
added, free sugars, sucrose, and fructose, and T2D incidence. It
remains unclear whether these sugars, when consumed in
various forms or at varying levels, have similar harmful re-
lationships. Indeed, it has been reported both in prospective
cohort studies and controlled feeding trials that the intake of
fructose-containing sugars, independent of food form, is not
linked to increased cardiometabolic disease risk [6–8]. The role
of sugars from fruit juice compared to SSB and T2D risk has also
not been adequately compared. Additionally, the potential for a
threshold beyond which sugar intake becomes harmful is yet to
be determined. Addressing these gaps is essential to develop
more comprehensive dietary guidelines that account for the
intake of a broader spectrum of dietary sugar types and their
impact on T2D risk.

When undertaking a global analysis across all levels of
exposure, a dose-response meta-analysis (DRM) is the preferred
method and uses all incremental levels of the predictor from
lowest to highest [9–12]. DRM allows for an assessment of risk
ratios (RRs) per unit of measure and is superior to other
methods, such as an extreme quantile meta-analysis, which only
uses a fraction of the available information from included
studies. A DRM is also useful when looking for potential
nonlinear associations in the dose-response over the global
range [9,12]. The European Food Safety Authority reviewed the
health risks of dietary sugar to inform tolerable upper intake
levels [13]. Although data were available for SSBs, there was
insufficient information to conduct dose-response analyses for
other sugar types.

To address these data gaps and provide clearer evidence to
inform dietary guidelines, we performed a robust systematic
review and quantitative DRM to investigate the relationship
between various types and sources of dietary sugar and T2D
risk. In addition to 2 major beverage sources of dietary sugar
intake (SSBs and fruit juice), we included total, free, and added
sugars, as well as fructose and sucrose, as they are the most
commonly assessed dietary sugar categories representing both
broad classifications and specific chemical sugar types. Specif-
ically, we examined fructose, sucrose, total, free, and added
sugars as well as nondietary SSB and fruit juice in relation to
incident T2D in diabetes-free healthy adults. This study may
help ascertain any benefit or harm of dietary sugar, helping to
provide evidence of a biological gradient based on sugar type,
amount, and source.
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Methods

This systematic review was registered with the International
Prospective Register of Systematic Reviews (PROSPERO identi-
fier: CRD42023401800) and was conducted according to the
Meta-analysis of Observational Studies in Epidemiology guide-
lines [14]. Studies were selected for the review based on the
participants, intervention, comparison, outcome, and study
design criteria (Supplemental Table 1).

Search strategy and selection
We conducted a systematic literature search of MEDLINE,

Web of Science, Cochrane, Embase, and CINAHL library data-
bases on February 28, 2023 (updated July 9, 2024). Broad search
terms included those related to types of dietary sugar, T2D, and
noninterventional studies (see Supplemental Table 2). Surveys
and reports known to the authors or found through manual
searches (screening reference lists of relevant publications) were
also included. We searched with no time restriction and only
considered studies that were in the public domain, had sum-
marized data, and were published in English.

After the removal of duplicates, 2 investigators independently
screened articles on the basis of title and abstract from all 5
databases for potentially relevant studies (Supplemental
Figure 1). The full texts of these studies were independently
reviewed by 2 reviewers according to predefined inclusion and
exclusion criteria (Supplemental Table 3). We considered studies
to be eligible for inclusion if they were prospective cohort studies
of �2 years in duration that assessed the intake of dietary sugars
(total sugars, added sugars, free sugars, fructose, sucrose), or
select food sources of sugar (nondietary SSBs, fruit juice) and
ascertained incident T2D. Healthy adults aged �18 years from
any racial or ethnic background who did not have diabetes at
study initiation were included. Only studies that reported esti-
mates of risk relations (i.e., hazard ratio, odds ratio, relative risk)
of T2D along with measures of uncertainty by categories of sugar
exposure were eligible. The screening and sorting process, along
with the predefined exclusion criteria, are listed in Supplemental
Figure 1. Discrepancies in the selection of eligible studies were
resolved by consensus. Relevant study characteristics were
extracted by 2 reviewers independently (Supplemental Table 4).
Relative measures of T2D risk by sugar intake categories were
extracted from models adjusted for body fat and energy intake at
a minimum in addition to other lifestyle and dietary factors
whenever such adjustments were reported. When multiple
publications from a study were available, the study with more
cases, more complete data, or the longest duration of follow-up
was used. A single cohort was included more than once if
different sugar types measured in this cohort were reported in
separate studies. When reports provided incomplete informa-
tion, study authors were contacted.

We selected a 12-ounce serving size for SSBs in the DRM
because it represents the standard size of a single can. Coca-Cola
was used as the standard for SSBs, containing 39 g of sugar per
12-ounce serving, as documented in the USDA FoodData Central
database (Food ID: 2678649). For fruit juice, we chose an 8-
ounce serving, as this is the recommended portion size and
equivalent to 1 cup. We referenced an orange juice drink with
23.3 g of sugar per 8-ounce serving, according to the USDA
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FoodData Central database (Food ID: 169044). Studies reporting
on fructose had varied definitions; for example, Ahmadi-Abhari
et al. [15] and Meyer et al. [16] both analyzed fructose as an
individual sugar. Kanehara et al. [17] computed total fructose
intake as fructose intake þ ½ sucrose intake. Schulze et al. [18]
did not provide definitions for fructose.
Statistical analysis
We applied a random-effects model to derive summary RRs

and 95% CIs to investigate the associations of different sugar
types with T2D incidence [19]. The standard error for the loga-
rithm RR of each study was obtained via the inverse variance
method and was considered the estimated variance of the loga-
rithm RR [19]. The meta-analysis pooled all risk ratio effect
measures (odds ratio, relative risk, and hazard ratio). For the
dose-response analysis, we applied 2-stage random-effects met-
a-analyses described by Greenland and Longnecker [10] and
Orsini et al. [11], as implemented in the dosresmeta R package.
Data on cases, noncases, and person-years, along with the RRs
and 95% CIs, were required for >2 quantitative exposure cate-
gories to apply the cubic spline modeling method.

Linear models and restricted cubic splines for each study were
calculated to compare linear with possible nonlinear associations.
We used 3 fixed knots at the 10th, 50th, and 90th percentiles of
the reported intake range for the cubic spline modeling. These
models were fitted separately for each study using the dosresmeta
package in R [20] and then combined in a multivariate
random-effects meta-analysis to examine the dose-response
trends, which were visualized on graphs. The pooled RRs were
considered statistically significant if their 95% CIs did not include
the null value of 1.00. RRs and 95% CIs were rounded to 2 dec-
imal places; when values were rounded to the significance
threshold of 1.00, we indicated if the full precision value was
rounded down (“>”) or up (“<”). We used a P value < 0.05 in all
tests to determine statistical significance of tests for linearity or
heterogeneity. Q test and the I2 statistic were used to quantify
heterogeneity, with a value >50% for the I2 statistic indicating
potentially important statistical heterogeneity [21]. For linear
models, we extracted the fixed-effects coefficients and CIs from
the dosresmeta output and used Python to interpolate the pooled
relative risk at 20 g/d of sugar intake, providing a standardized
reference point for interpretation. The amount 20 g/d represents
a reasonable and comparable dose and falls within the upper and
lower bounds of intakes measured within studies.

We assigned the median or mean intake for each quantile to
the corresponding risk estimate. For open-ended lower bounds,
the median was set assuming the starting point is 0 (e.g., 5 for
<10). For closed ranges, the midpoint was used (e.g., 15 for
10–20). For open-ended upper bounds, the difference between
the previous group’s midpoint and its lower bound was added to
the start of the last group to estimate the median (e.g., 15� 10¼
5, added to 20 to yield 25). If studies reported exposure of SSB or
fruit juice in serving sizes but did not specify the amount, rec-
ommended serving sizes for SSB and fruit juice conversions were
used (Supplemental Table 3).

According to the Cochrane Handbook guidelines, publication
bias should be evaluated for analyses that include �10 studies.
Therefore, funnel plots, Begg’s test, and Egger’s test were per-
formed for SSB and fruit juice categories only [22,23] (Supple-
mental Figure 2).
3

Risk of bias and certainty of evidence assessment
To improve the validity of the findings, potential risks of bias

were assessed using the ROBINS-E (Risk of Bias in Non-
randomized Studies of Exposures) tool [24,25]. This tool mea-
sures bias in the selection of participants, classification of ex-
posures, measurement of outcomes, and control of confounding,
as well as biases due to deviations from intended interventions
and missing data (see Supplemental Tables 4 and 5).

The certainty of evidence for each exposure and outcome as-
sociation was rated using the Grading of Recommendations
Assessment, Development and Evaluation (GRADE) criteria [26,
27]. GRADE rates the certainty of a body of evidence based on the
following domains: within-study risk of bias, inconsistency,
indirectness, and imprecision between studies, as well as publi-
cation bias, large magnitude of effect, and dose-response
gradient. Each pooled estimate was assessed using these criteria
to rate the confidence for each dietary variable-disease outcome.
Included observational studies started at high-quality evidence
because of the additional use of ROBINS-E tool and were then
downgraded due to weaknesses inherent in the observational
design as well as other prespecified criteria [28]. Criteria to
downgrade included study limitations (weight of studies showed
risk of bias by ROBINS-E), inconsistency (substantial unexplained
interstudy heterogeneity, I2 > 50% and P < 0.10), indirectness
(presence of factors relating to the population, exposures, and
outcomes that limit generalizability), imprecision (95% CIs were
wide or crossed the minimally important threshold, 1.0) and
publication bias (significant evidence of small-study effects).
Criteria for upgrading included a large effect size (RR> 2 or RR<

0.5). Upgrading for a dose-response gradient was not applied due
to the risk of residual confounding [29].
Results

A total of 10,384 records were retrieved from the databases.
Through screening and application of inclusion and exclusion
criteria, 321 articles were identified for full-text review, of which
239 were duplicates (see Supplemental Figure 1). Of the 106
studies reviewed in full, 82 were excluded (see Supplemental
Table 3 for full list of exclusions). Five additional studies were
found via manual search [18,30–33]. Finally, we identified 29
prospective cohort studies that were included in the final anal-
ysis [15–18,31,32,34–56]. The 29 reports were of 25 cohort
studies involving 801,530 unique participants.

The main characteristics of the selected studies are presented
in Supplemental Table 6. Six studies were conducted in Asia, 4 in
Australia, 13 in Europe, 3 in Latin America, and 11 in the United
States. The follow-up period ranged from 2.2 to 24.0 y, andmean
follow-up duration was 12.4 y for SSB, 12.5 y for fruit juice, 8.9 y
for sucrose, 8.8 y for total sugars, 7.6 y for fructose, and 7.7 y for
added sugars. Dietary assessment of 22 studies was performed
using validated food frequency questionnaires; 7 studies used
either a diet record, food diary, diet history, or a dietary inter-
view. All studies with multivariable models were adjusted for
potential confounders. The prespecified primary confounding
variable was age, for which all studies adjusted. Out of the 29
included studies, most controlled for BMI (n ¼ 28), energy
intake (n ¼ 25), physical activity (n ¼ 27), smoking (n ¼ 28),
alcohol drinking (n ¼ 24), education level (n ¼ 20), and family
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history of diabetes (n ¼ 18). Ascertainment of incident cases
was objectively performed by most studies either using a medical
record (76%), a biomarker assessment to validate diagnosis
(17%), or by confirmed use of T2D medication (7%). Six studies
reported results for men and women separately [17,18,32,36,39,
49], 3 cohorts only included men [36,44,53], and 9 cohorts only
included women [16,31,34–36,40,42,48,51], and 1 study re-
ported results for 2 cohorts separately [36]. No study on free
sugars as a sugar predictor were found. Supplemental Table 7
presents specific data on outcomes and sugar intake amounts,
and Supplemental Figure 3A-G shows linear and cubic spline fits
for all sugar categories by individual study as well as aggregated.

SSB results
Seventeen studies (n ¼ 541,288; 43,532 cases) were included

to analyze the dose-response relationship between SSB and
incident T2D risk. With each additional serving of SSB per day,
the risk of developing T2D increased by 25% (RR: 1.25; 95% CI:
1.17, 1.35; I2 ¼ 45%; moderate certainty) (Figure 1; Supple-
mental Table 8). Comparing categories of highest compared with
lowest intakes of SSB, a significant association with the risk of
T2Dwas observed (RR: 1.39; 95% CI: 1.26, 1.55; P-heterogeneity
¼ 0.011; n ¼ 23) (Figure 2). Compared to other dietary sugar
categories, a 20 g/d intake of sugar from SSB was associated with
the greatest increase in risk of T2D (RR: 1.12; 95% CI: 1.08,
1.17), and data were consistent with a dose-response linear
relationship (Figure 1 and Figure 3; P-nonlinearity ¼ 0.87).
A)

FIGURE 1. Overall pooled effect of 20 g/d sugar intake on T2D risk: comp
Bar plot illustrating the summary effect of a 20 g/d intake for different sug
typical servings sizes per day of SSBs (39 g/d) and fruit juice (23.3 g/d).
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Fruit juice results
Fourteen studies (n ¼ 490,413; 43,065 cases) were included

in the DRM for fruit juice and incident T2D risk. With each
additional serving of sugar from fruit juice per day, the risk of
developing T2D increased by 14% (RR: 1.05; 95% CI: >1.00,
1.11; moderate certainty) (Figure 1; Supplemental Table 8).
Comparing categories of highest compared with lowest intakes
of sugar from fruit juice, we observed an association with the risk
of T2D (RR: 1.08; 95% CI: >1.00, 1.17; I2 ¼ 38%; P-heteroge-
neity ¼ 0.070; n ¼ 15) (Figure 2). Compared to other dietary
sugar categories, a 20 g/d intake of sugar from fruit juice was
associated with a 4% increase in T2D risk (RR: 1.04; 95% CI:
>1.00, 1.09) and followed a linear dose-response relationship
(P-nonlinearity ¼ 0.34) (Figures 1 and 3).

Total sugar results
Four studies (n ¼ 109,858; 13,675 cases) were included to

meta-analyze the dose-response relationship between total sugar
intake and incident T2D risk. The intake of an additional 20 g/
d of total sugar was associated with a significant reduction in
T2D risk (RR: 0.96; 95% CI: 0.94, 0.98; low certainty) (Figure 1;
Supplemental Table 8). Comparing categories of highest
compared with lowest intakes of total sugar, a decrease in T2D
risk was observed (RR: 0.87; 95% CI: 0.79, 0.94; I2 ¼ 0.3%; P-
heterogeneity¼ 0.404; n¼ 5) (Figure 2). Evidence of a nonlinear
dose-response association was detected (P-nonlinearity ¼ 0.026)
(Figure 3). T2D risk decreased with total sugar intake up to ~40
B)

arison of sugar categories and typical doses of SSB and fruit juice. (A)
ar types on risk of T2D. (B) The rightmost bars compare these doses to
SSB, sugar-sweetened beverage; T2D, type 2 diabetes.



A)

C) D)

B)

F)

E)

FIGURE 2. Forest plots of risk ratios for extreme quantiles of daily sugar consumption by sugar category and the risk of T2D. Summary line
represents the overall relative risk comparing the highest intake category to the lowest intake category as reported in the studies, with lower and
upper 95% confidence intervals in parenthesis. Grams/day represent the highest intake dose in each study. Subplots of T2D risk for the following
sugar categories: (A) SSBs, (B) fruit juice, (C) total sugar, (D) sucrose, (E) added sugar, and (F) fructose. Caff, caffeinated; Cafffree, caffeine-free; f,
female; HPFS, Health Professionals Follow-Up Study; LCI, lower confidence interval; m, male; NHS, Nurses’ Health Study; RR, risk ratio; SSB,
sugar-sweetened beverage; T2D, type 2 diabetes; UCI, upper confidence interval.
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to 60 g/d, after which the risk plateaued and slightly increased,
although the pooled RR remained <1.0, showing a continued
protective association.

Dietary sucrose results
Seven studies (n ¼ 223,238; 9065 cases) were included to

meta-analyze the dose-response for dietary sucrose intake and
incident T2D risk. An increase in sucrose intake by 20 g/d was
associated with a reduction in risk of T2D (RR: 0.95; 95% CI:
0.91, <1.00; moderate certainty) (Figure 1; Supplemental
Table 8). Comparing categories of highest compared with lowest
intakes of dietary sucrose, a decrease in risk was observed (RR:
0.88; 95% CI: 0.78, 0.99; I2¼ 38%; P-heterogeneity¼ 0.118; n¼
9) (Figure 2). Data were consistent with a linear dose-response
relationship (P-nonlinearity ¼ 0.720) (Figure 3).

Added sugar results
Two studies (n ¼ 31,004; 4796 cases) were included to

analyze the dose-response relationship for added sugar intake
and incident T2D risk. An increase in added sugar intake by 20 g/
d was not associated with the risk of T2D (RR: 0.99; 95% CI:
0.96, 1.01; low certainty) (Figure 1; Supplemental Table 8).
Comparing categories of highest and lowest intakes of added
sugar, no association with the risk of T2D was observed (RR:
0.92; 95% CI: 0.79, 1.07; I2 ¼ 0.0%; P-heterogeneity ¼ 0.909; n
5

¼ 2) (Figure 2). No evidence of a nonlinear dose-response as-
sociation was detected (P-nonlinearity ¼ 0.180), however a
slight J-shaped relationship was observed (Figure 3).

Dietary fructose results
Five studies (n ¼ 158,136; 4101 cases) were included in the

DRM for dietary fructose intake and incident T2D risk. An in-
crease in fructose intake by 20 g/d was not associated with the
risk of T2D (RR: 0.98; 95% CI: 0.83, 1.23; very low certainty)
(Figure 1; Supplemental Table 8), with evidence of substantial
heterogeneity (I2 ¼ 76%; P-heterogeneity � 0.001); n ¼ 7).
Comparing categories of highest compared with lowest intakes
of dietary sucrose, no association with T2D risk was observed
(RR: 0.97; 95% CI: 0.74, 1.26) (Figure 2). Evidence of a
nonlinear dose-response association was detected (P-nonline-
arity ¼ 0.002). T2D risk decreased with increasing fructose
intake up to ~10 to 15 g/d, after which risk began to increase
(Figure 3).

Risk of bias
No study was judged as having low risk of bias due to the

nonrandomized observational nature of the studies, the possi-
bility of residual confounding, and the possibility of measure-
ment errors in dietary assessments. Thus, all publications were
judged as having a moderate risk of bias except for 1 [55], which



FIGURE 3. Dose-response relationship between incident T2D risk and consumption of (A) sugar from SSB, (B) sugar from fruit juice, (C) total
sugars, (D) dietary sucrose, (E) added sugars, and (F) dietary fructose. Panels depict dose-response relationships modeled using linear and
nonlinear approaches. Shaded regions represent 95% confidence intervals. Red shaded regions correspond to the nonlinear model fit, using
restricted cubic splines to capture potential nonlinearity in the relationship. Grey shaded regions represent the linear model fit, assuming a
constant rate of change across all dose levels. Solid lines show the point estimates for each mode: solid red line reflects the nonlinear model;
dashed grey line corresponds to the linear model. The x-axis represents maximum intake ranges across all included studies for a given sugar type,
and the y-axis shows relative risk of T2D. SSB, sugar-sweetened beverage; T2D, type 2 diabetes.
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was judged as having a serious risk of bias due to its nested
case-cohort study design (Supplemental Table 5). Supplemental
Table 6 lists the ROBINS-E description and decision criteria for
each risk of bias domain. The results of the risk of bias were
considered as part of the GRADE evaluation (for full details of the
GRADE evidence, see Supplemental Table 8).

Sensitivity analysis and publication bias assessment
For all dietary sugar exposure categories, the significance or

direction of the association was not altered by the removal of any
single study at a time (Supplemental Table 9).

Visual inspection of funnel plots and formal statistical tests
indicated no evidence of publication bias for studies on SSBs or
fruit juice. For SSBs, Begg’s test (Kendall’s tau ¼ 0.028, P ¼
0.876) and Egger’s test (t ¼ 0.760, df ¼ 21, P ¼ 0.456) were
6

nonsignificant, with a limit estimate of 0.066 (95% CI: 0.01,
0.12) as the standard error approached 0. Similarly, for fruit
juice, Begg’s test (Kendall's tau ¼ �0.143, P ¼ 0.495) and
Egger’s test (t ¼ �0.100, df ¼ 13, P ¼ 0.922) were nonsignifi-
cant, with a limit estimate of 0.028 (95% CI: �0.07, 0.13). These
findings suggest no significant asymmetry in the funnel plots,
indicating an absence of publication bias for studies on both
beverages.
Discussion

In this systematic review and meta-analysis of prospective
cohort studies on the dose-response relationship between dietary
sugar intake (total, added, sucrose, fructose, SSB, and fruit juice)
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and T2D incidence, we found that risk was influenced by the
form in which sugar was consumed. Specifically, each additional
serving of SSBs and fruit juice increased the risk of T2D by 25%
and 5%, respectively. In contrast, the intakes of sucrose and total
sugar (which includes any consumption of natural sugars as well
as added) were inversely associated with T2D, indicating a
protective relationship. However, added sugar and fructose did
not show clear associations with T2D risk.

Consensus is lacking whether the fructose component of sugar
and high-fructose corn syrup confers a greater risk or if sugar
intake is simply a vehicle for increased caloric intake. Systematic
reviews and meta-analyses of controlled feeding trials have
demonstrated that the detrimental effects of sugars on weight
gain and cardiometabolic risk factors are primarily mediated by
excess energy intake, with evidence of harm reported in studies
where sugars were added to diet as excess energy [57–61].
However, in our study, the harmful associations of sugars from
SSBs and fruit juice on T2D risk were reported even with
adjustment for energy intake and BMI in all but 4 studies. This
suggests that the risk of dietary sugar consumed in liquid form
may stem from adverse metabolic effects beyond excess calories
and body weight. Evidence from intervention studies has shown
that liquid fructose is a potent stimulator of hepatic de novo
lipogenesis (DNL) [62,63] and worsens insulin sensitivity in both
hyper- and isocaloric settings [64,65]. For example, Stanhope
et al. [64] reported that consuming fructose-sweetened bever-
ages (25% of daily energy) for 10 wk significantly increased
DNL, fasting insulin, and blood glucose and decreased insulin
sensitivity, effects not observed with glucose [58]. Similar effects
have been reported at lower doses: a 12-wk study found that
consuming 75 g/d of liquid fructose raised insulin levels and
HOMA-IR in obese men compared to baseline [62], whereas a
3-wk study providing 80 g/d showed that fructose increased
endogenous glucose production and impaired hepatic glucose
suppression, effects not seen with equivalent glucose intake [66].
These findings highlight that fructose-containing SSBs uniquely
disrupt liver metabolism and elevate insulin resistance. In our
study, fructose was mainly measured as an individual sugar, not
part of sucrose or high-fructose corn syrup, and had high
inconsistency in the results.

Compared to sugars from SSBs, which provide empty calories,
fruit juice can contain beneficial nutrients such as vitamins and
phytochemicals; however, our study found that sugar consump-
tion from fruit juice was positively associated with T2D risk. The
high sugar content and lack of fiber in fruit juice are similar to
SSBs, making it a poor substitute for whole fruits, which provide
higher fiber content to support better blood glucose regulation.
SSBs supply isolated sugars leading to a greater glycemic impact,
whereas other sources of dietary sugars, particularly when
consumed in nutrient-dense foods such as whole fruits, dairy
products, or whole grains, may elicit slower blood glucose re-
sponses due to accompanying fiber, fats, or proteins.

Other sources of fructose-containing sugars, such as those
added to grain products, yogurt, fruit, and dairy, contribute
significantly to total sugar intake, which includes both naturally
occurring and added sugars. We observed a significant inverse
association between total sugars and T2D incidence in our study.
The beneficial impact of total sugars on glucose metabolism may
be explained by the favorable effects of micronutrients and
bioactive polyphenols found within natural sources of sugars and
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the fact that many of these foods have a lower glycemic index
(e.g., whole fruit, whole grain, milk and dairy products) [67]. A
high intake of fruits, which are naturally high in fructose, is
associated with good metabolic health, and when consumed in
whole form rather than as juice is inversely associated with T2D
risk [35,68–71]. Additionally, nutritious foods with sugar added
to them such as whole-grain cereals and yogurt have been
associated with a reduced risk of T2D [72], possibly due to their
nutrient and phytochemical profiles. Indeed, the inclusion of
sugar in these healthful foods may enhance their consumption,
which could explain why dietary sucrose, a common form of
added sugar, was inversely associated with T2D in our study.
Thus, we posit that the food source in which sugars are
consumed needs to be considered when evaluating the complex
relationship between dietary sugar and disease outcomes [73].

Although fructose is not consumed alone to any appreciable
degree in human diet, a great deal of research has focused on this
monosaccharide. In 2011, the European Food Safety Authority
issued a scientific opinion on fructose, stating that “consumption
of fructose leads to a lower blood glucose rise than consumption
of sucrose or glucose,” although noting that high intakes of
fructose (set at >25% of total energy) were shown to lead to
metabolic complications such as dyslipidemia, insulin resistance,
and increased visceral adiposity [74]. This dose-dependent
relationship, along with the various definitions of fructose (in-
dividual or including 50% of sucrose) in our studies may explain
the high degree of variation observed in our fructose
meta-analysis, which is why it was graded as very low in its
certainty of evidence.

Several scientific organizations, including the WHO, the Sci-
entific Advisory Council on Nutrition, and the American Heart
Association, have recommended significant restrictions on upper
limits of sugars consumption [75–77]. The WHO recommended
that<10% of energy be derived from free sugars based primarily
on evidence of detrimental effects of SSB, particularly on weight
status [78]. However, there was no definitive science indicating
that 10% is a threshold for increased risk. Instead, the committee
performed modeling that suggested that diets providing 4% to
6% of energy from added sugars could still meet recommended
nutrient levels and stay within total energy limits for diets
ranging from 1200 to 2800 kcal/d [79]. Americans consume
~13% of energy from added sugars [80], making the 10%
threshold more of a reduction goal than an optimal intake level.

Our DRM aligns with these guidelines to some extent but also
highlights important nuances. Our findings indicate that the risk
of T2D increases in a dose-response fashion at all levels of sugar
intake from liquid sources, with no apparent upper tolerable
intake level for these sources. This underscores the need for even
more stringent recommendations for liquid sugars such as those
in SSBs and fruit juice, as they appear to harmfully associate with
metabolic health. Rather than condemning all added sugars,
future guidelines might consider the differential effects of sugar
based on its source and form. Dietary sugar in the context of
nutrient-dense foods may have a different risk profile than liquid
sources, underscoring the importance of assessing sugar intake
within the broader dietary matrix.

Strengths and limitations
Nutrition-related meta-analyses of prospective studies offer

insights based on real-world dietary intakes in natural settings,
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enhancing the generalizability of their findings. A follow-up
study design is often required for the investigation of hard dis-
ease endpoints such as T2D incidence, which may take years to
develop. Thus, when studying the relationship between dietary
sugar and the development of T2D, prospective cohort studies
represent the strongest evidence available among epidemiolog-
ical approaches. A previous (2017) systematic review and meta-
analysis on non-SSB sugars and T2D incidence in observational
studies compared upper and lower quantiles of intake and found
no adverse associations between fructose-containing sugars and
incident T2D, and sucrose intake was associated with a
decreased risk [81]. Compared to this review, our systematic
review and meta-analysis applied a dose-response meta-re-
gression at all levels of intake from lowest to highest [9–12].
Other meta-analyses associating incident T2D with sugary bev-
erages used extreme quantile comparisons. A further strength is
that we performed an extensive systematic search of 5 databases
and investigated SSB and fruit juice as well as 5 other sugar
categories for a comprehensive overview of various sugar types
and T2D risk. Finally, the removal of individual studies during
sensitivity analyses did not impact the direction or significance
of all results, indicating the robustness of the findings.

Despite the inclusion of large, high-quality cohorts, the
inability to rule out residual confounding is a limitation inherent
in all observational studies. High consumers of SSBs tend to have
a higher overall energy intake, engage in less physical activity,
and have higher rates of smoking [82–84]. Although almost all
included studies controlled for these lifestyle factors and used
validated dietary assessment methods, residual confounding
could include unmeasured dietary and lifestyle factors as well as
the reliability of self-reported intake [85], which could affect the
results of the dose-response analyses [86]. Evidence for incon-
sistency was seen in the dietary fructose analysis, which had
wide CIs preventing any clear conclusions to be drawn about a
clinically important benefit or harm of this sugar, especially
because definitions of fructose diverged between included
studies. A further limitation is that we did not include specific
sugar sources such as candy, ice cream, or various syrups in the
meta-analysis. This decision was made to focus on the broader
sugar categories and specific chemical types as well as the 2 most
frequently consumed beverage sources to ensure a globally
comprehensive yet focused synthesis of the most commonly
studied sugars. A final limitation is the imprecision in the esti-
mates of pooled risk for added sugars and fructose, which
contributed to downgrades in GRADE assessments for these ex-
posures. The evidence for total sugars was rated as low quality
due to the inclusion of 1 study with a high-risk of bias. Pro-
gressive dose-response gradients—positive for SSB and fruit
juice and negative for total sugar and sucrose intake—were
observed; however, we did not upgrade for these as is typically
done in GRADE due to the risk of residual confounding.
Conclusion

In this systematic review and meta-analysis of prospective
cohort studies on the dose-response relationship between dietary
sugar intake and T2D incidence, we found that SSBs and fruit
juice were associated with an increased risk of T2D (moderate
8

certainty), while intakes of total sugar (low certainty) and su-
crose (moderate certainty) were inversely associated with T2D
risk, and no clear relationships were observed for added sugar
and fructose. Our findings suggest the importance of sugar type
in determining the association of dietary sugar, with higher
liquid sugar intakes apparently linked to greater harm. Our re-
sults do not support the common assumption that dietary sugar
intake, irrespective of type and amount, is consistently associ-
ated with an increased risk of T2D. Future research is needed to
evaluate the long-term impacts of reducing liquid sugar con-
sumption on T2D prevention and to investigate the mechanisms
underlying the differing effects of liquid and solid sugars.
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