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A B S T R A C T

With the role of artificial intelligence (AI) in precision nutrition rapidly expanding, a scoping review on recent studies and potential future
directions is needed. This scoping review examines: 1) the current landscape, including publication venues, targeted diseases, AI applications,
methods, evaluation metrics, and considerations of minority and cultural factors; 2) common patterns in AI-driven precision nutrition studies;
and 3) gaps, challenges, and future research directions. Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR) process, we extracted 198 articles from major databases using search keywords in 3 cate-
gories: precision nutrition, AI, and natural language processing. The extracted literature reveals a surge in AI-driven precision nutrition
research,with~75%(n¼148) published since 2020. It also showcases a diverse publication landscape,with themajority of studies focusing on
diet-related diseases, such as diabetes and cardiovascular conditions, while emphasizing health optimization, disease prevention, and man-
agement.We highlight diverse datasets used in the literature and summarizemethodologies and evaluationmetrics to guide future studies.We
also emphasize the importance of minority and cultural perspectives in promoting equity for precision nutrition using AI. Future research
should further integrate these factors to fully harness AI’s potential in precision nutrition.
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Statement of Significance

This scoping review offers the most recent advancements in artificial intelligence (AI) for precision nutrition, expanding the scope to not only

AI methodologies and their applications in precision nutrition but also evaluates publication venues, targeted diseases, datasets, and minority and
cultural perspectives, which have been mostly overlooked in prior studies. Furthermore, with numerous gaps and challenges discussed in the
article, this review significantly improves the understanding of AI’s potential in precision nutrition and provides new directions for future
research.
Abbreviations: AD, Alzheimer’s disease; AI, artificial intelligence; ANOVA, analysis of variance; AUC, area under the curve; AUROC, area under the receiver
erating characteristic; CGM, continuous glucose monitoring; CRC, colorectal cancer; DSS, decision support system; EHR, electronic health record; EN, enteral
trition; FEL, food exchange list; FFQ, Food Frequency Questionnaire; HbA1c, hemoglobin A1c; HEI, Healthy Eating Index; ICU, intensive care unit; LLM, large
guage model; LSTM, long short-term memory; MIMIC-IV, Medical Information Mart for Intensive Care IV; NLP, natural language processing; PPGR, postprandial
cemic response.
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Introduction

Precision nutrition is an advanced approach [1] to dietary
planning that tailors nutritional guidance to individual char-
acteristics [1], including genetics [2], lifestyle [3], and envi-
ronmental factors [4]. This approach is designed to enhance
overall health and well-being, as well as to prevent and manage
diseases. As a critical part of precision health, precision nutri-
tion recognize the vital connection between diet and health,
advocating for personalized dietary plans instead of generic
guidelines [5–7]. These plans are developed using scientific
data on how individual bodies respond to different foods,
aiming to optimize health outcomes by addressing unique di-
etary needs.

The integration of artificial intelligence (AI) into precision
nutrition opens up unprecedented opportunities to enhance the
efficacy and personalization of nutritional recommendations.
AI can analyze vast amounts of data from diverse sources, such
as multiomic profiles [8], dietary habits [9], and medical his-
tories [10], enabling the identification of nuanced dietary
needs at the individual level [9]. The domain of AI is advancing
at an unprecedented pace of development, evolving from clas-
sical methodologies– such as recommendation systems,
regression analyses, and classification techniques– to
cutting-edge innovations in generative AI (GenAI) and large
language models (LLMs). This rapid progress is reflected in the
growing number of researchers incorporating AI technologies
to enhance personalized dietary recommendations [11–13] and
to improve disease management [14,15]. Concurrently, there is
a significant increase in both the volume and variety of data
available. For example, it is projected that the United States will
record 1 billion patient visits annually within electronic health
record (EHR) systems [16], which include a variety of data such
as structured data, clinical notes, medical images, laboratory
results, genomic data, and patient-generated health informa-
tion. Given these advancements, there is a critical need for a
comprehensive literature review that synthesizes recent
research and evaluates the potential of advanced AI tools and
new datasets in advancing precision nutrition. Such a review is
essential not only for understanding the current landscape but
also for identifying future directions and opportunities in the
field.

This literature review includes articles discussing the latest
advancements in AI and their applications in precision nutrition.
Section “Methods” outlines our search strategy and keywords,
along with our selection of articles. Section “Results” presents
our results and findings across various categories: publication
venues, disease areas, precision nutrition applications using AI,
dataset releases and normalized data types, AI methods, evalu-
ation metrics, and minority and culture. Section “Discussion”
discusses possible avenues for future research. The contribution
of this review lies in our inclusion of more comprehensive
sources of research, detailed information about research
methods, and research materials, including detailed dataset links
and descriptions in Supplemental Table 1.

Compared to previous literature review on AI for precision
nutrition [5,17–19], we included a larger number of recent
articles, driven by the substantial increase in relevant publi-
cations after 2022. We also broadened our search criteria by
utilizing a more extensive set of keywords and incorporating a
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wider range of databases. Although earlier literature reviews
focused primarily on AI’s applications in health and nutrition,
our review extends beyond this by examining publication
venues, targeted diseases, applications, datasets used in
research, AI methods, evaluation metrics, and considerations
for minority and cultural factors to provide a comprehensive
overview of AI applications in precision nutrition. We analyzed
the publication venues of the reviewed articles to highlight the
emerging nature of this field. Additionally, we examined the
targeted diseases to identify the major focus areas within the
research community. AI applications in the reviewed literature
were categorized into three distinct groups, and we visualized
their relationships to the targeted diseases. The datasets used
in the reviewed articles are listed in section “Results” and
detailed in the Supplemental Table 1 to assist future research
in using the available data. Furthermore, our review system-
atically categorized AI methods into eight groups, with each
method described alongside examples from precision nutrition
research. Evaluation metrics used to assess AI models were also
categorized and explained with relevant examples. Finally, we
conducted an in-depth discussion on minority and cultural
topics, exploring the impact and potential of various factors,
such as socioeconomics, cultural sensitivity, technology
accessibility and digital literacy, ethical and privacy concerns,
personalized nutrition needs, community-based approaches,
and policy and advocacy, on AI for precision nutrition. We
believe these insights can provide our readers with a better
understanding of the field of precision nutrition and AI, while
inspiring future research in this domain.
Methods

To comprehensively capture of studies in the emerging field
of AI for precision nutrition, we utilized a scoping review strat-
egy following the Preferred Reporting Items for Systematic re-
views and Meta-Analyses extension for Scoping Reviews
(PRISMA-ScR) [20].
Eligibility criteria and search strategy
Inclusion criteria in our search strategy included articles 1)

ranging from 8 December, 2014 to 28 May, 2024 in English
sourced from reputable academic databases, including ACL
Anthology, ACM Digital Library, EMBASE, IEEE Xplore Library,
PubMed, Scopus, and Web of Science; and 2) with keywords in
subject heading, title, abstract, and keyword sections. We used
search keywords in three categories: precision nutrition key-
words (for example, precision, nutrigenomics-based, eating,
and nutritional genomics), AI keywords (for example, machine
learning, unsupervised learning, ensemble learning, random
forest, and expert system), and natural language processing
keywords (for example, text mining, natural language pro-
cessing, and foundation language models). The full list of search
keywords in each category is provided in Supplemental Text 1.
We used the following keyword logics across searches in all
databases: (precision nutrition keywords) AND {[artificial in-
telligence keywords] OR [natural language processing
keywords]}.

Exclusions criteria included 1) editorials, errata, letters,
notes, and comments; and 2) animal studies.
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Selection of articles
A total of 881 literature articles were retrieved after

removing duplicates. Thirty reviewers screened all these
retrieved articles in 3 rounds. A flowchart describing the review
process is shown in Figure 1. In the first round, reviewers
conducted abstract screening and excluded articles that were
not relevant (n¼ 449) or without abstract (n¼ 5). In the second
round, those that were related (n ¼ 358) but did not have
enough information (n ¼ 69) were included for full-text
screening. In the third round, the full text of these 427 arti-
cles was reviewed to determine their relevance to the literature
review topic and articles not relevant (n ¼ 169) or inaccessible
(n ¼ 11) were excluded. Additionally, animal studies (n ¼ 49)
were also excluded. This process resulted in 198 relevant arti-
cles included in this literature review. Given that this is a
scoping review, no risk of bias assessment was performed.
Moreover, elements from the extracted studies were synthe-
sized into key themes, including findings, methodologies,
evaluation metrics, AI applications, datasets used, populations
studied, and minority information, and were further analyzed
and presented in section “Results” of this review.
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• Ovid MEDLINE(R) In-Process & Other
 Non-Indexed Citations and Ovid MEDLINE
 and Daily (n = 409)
• Ovid Embase (n = 387)

• Scopus (n = 414)

• Web of Science (n = 197)

• ACM Digital Library (n = 36)

• IEEE Xplore (n = 213)

Abstracts screened (n = 881)

 Papers reviewed (n = 427)

 Papers included in the literature review (n = 19

FIGURE 1. Flow diagrams
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Results

Publication venues
A total of 198 articles were disseminated across 142 venues,

comprising 98 journals and 44 conferences. Specifically, the
journals were manually classified into five distinct categories: 1)
Clinical Medicine (articles n ¼ 45; venues n ¼ 33), 2) Food &
Nutrition Science (articles n¼ 35; venues n¼ 18), 3) Informatics
(articles n ¼ 27; venues n ¼ 19), 4) Computer Science (articles n
¼ 21; venues n¼ 18), and 5) Biology (articles n¼ 16; venues n¼
10). This distribution reflects a high level of interest and activity
in Clinical Medicine and Informatics, suggesting a strong focus
on applying AI techniques in clinical settings for personalized
nutrition interventions or medical applications. The significant
presence of Food & Nutrition Science and Computer Science
underscores the interdisciplinary efforts in applying AI to tackle
precision nutrition challenges. Meanwhile, the comparatively
smaller contributions from biology suggest a greater emphasis on
basic research within the field.

We also observed a widespread distribution of articles on
nutrition and AI across 142 journals and conferences, with the
(R)

Total excluding duplicates (n = 881)

• Relevant (n = 358)

• Not Relevant (n = 449)

• Not Enough Information (n = 69)

• No Abstract (n = 5)

• Total (n = 358 + 69 = 427)

• Relevant (n = 248)

• Not Relevant (n = 169)

• No Access (n = 11)

• Specimen Not Human (n = 49)

8)

for selecting articles.
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majority of publications being limited to only one or two articles
per venue. This distribution pattern reflects an interest from
diverse communities in the intersection of nutrition and AI. With
scholars from multiple fields collaborating on precision nutrition
and AI topics leveraging their unique expertise, this suggests
both the emerging nature of the field and its interdisciplinary
character, as researchers from various disciplines contribute to
exploring different aspects and implications. However, the
scattered publication patterns also indicate fragmented knowl-
edge, posing challenges for gathering comprehensive insights
into precision nutrition and AI.

Disease areas
Among the 198 publications analyzed, 99 of them specifically

studied one or more diseases. Overall, the top three most studied
diseases among the 99 publications are: diabetes (n ¼ 67), car-
diovascular diseases (n ¼ 23), and cancers (n ¼ 12). Less studied
diseases are: gastrointestinal disorders (n ¼ 6), neurodegenera-
tive diseases (n ¼ 5), eating disorders (n ¼ 4), mental health
disorders (n ¼ 2), obesity (n ¼ 1), eye fatigue (n ¼ 1), COVID-19
(n ¼ 1), food allergies (n ¼ 1), and skin disease (n ¼ 1). Research
on these less-studied diseases mostly emerged after 2020.
Figure 2 shows the distribution of the number of articles for
different disease areas over the years from 2014 to 2023.
Beginning in 2018, there has been a significant rise in the
number of articles exploring various diseases.

Diabetes, a pervasive metabolic disorder, has consistently
attracted interest over the years. Among the reviewed articles on
diabetes, 64 focused on type 2 diabetes, 11 focused on type 1
diabetes, 6 focused on prediabetes, and 3 focused on gesta-
tional diabetes. Many studies use AI technologies to assist dia-
betes self-management. For example, Bul et al. [21] evaluated a
web-based AI-driven nutrition platform designed to assist people
with diabetes and their caregivers in managing diet through
FIGURE 2. Trends in disease-focused
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personalized recipe recommendations, meal planning, and on-
line shopping. Gyuk et al. [22] introduced a prediction algorithm
aimed at improving the estimation of insulin needs for diabetics,
addressing inefficiencies observed with current methods based
on experience and conjecture. Other studies use machine
learning techniques to develop predictive models for diabetes
prevention. Ben-Yacov et al. [23] utilized a machine learning
algorithm for predicting postprandial glucose responses to
design diet for adults with prediabetes, highlighting the poten-
tial of precision nutrition to improve cardiometabolic health in
prediabetes. Lee et al. [24] developed a predictive model for
obesity risk by analyzing genetic, epigenetic, and dietary factors
and their interactions. This suggests sustained attention toward
understanding and addressing the complex challenges associated
with diabetes self-management, prevention, and treatment using
AI-driven approaches.

Cardiovascular diseases remain a recurring focus, with vary-
ing levels of attention over the years. Most studies leverage AI to
identify the relationship between diet and metabolic patterns in
relation to cardiovascular diseases [25]. For example, Shah et al.
[25] explored how individual metabolic responses to diet
contribute to cardiometabolic-cardiovascular disease risks, using
machine learning to identify metabolic patterns from diet in
adults. Ben-Yacov et al. [23] designed an experiment to investi-
gate the interaction between dietary modifications, microbiome
composition, and host metabolic responses within a dietary
intervention. The study compared a machine-learning-generated
personalized postprandial-targeting diet to a Mediterranean
(MED) diet in individuals with prediabetes.

Cancer research has received continuous focus since 2018.
Most studies that mentioned cancers focus on studying diet
intervention using machine learning for better health outcomes.
Some focused on how cancer is directly related to the digestive
system, such as colorectal cancer (CRC). Shiao [26] highlighted
research studies over the years.
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the predictive power of dietary factors assessed through Healthy
Eating Index (HEI) in influencing healthy eating behaviors,
particularly relevant in the context of cancer prevention strate-
gies tailored to multiethnic families affected by CRC. Other
studies explores dietary intervention methods for general cancer
rehabilitation, management, and prevention. For example,
Raguvaran et al. [13] introduced an enhanced neural network
model, called long short-term memory (LSTM) model, in an
automated medical diet system tailored for cancer patients.

Diseases like gastrointestinal disorders, eating disorders,
mental health disorders, neurodegenerative diseases, skin dis-
eases, COVID-19 [27], eye fatigue [28], obesity [29], and food
allergies [30] have emerged in later years, from 2020 to 2023, as
shown in Figure 2. This trend highlights emerging or evolving
health concerns that researchers are beginning to explore within
the context of AI and precision nutrition. For example, Pigsborg
et al. [29] utilized machine learning and metabolomics data to
develop a predictive model that accurately predicted weight loss
success in individuals, underscoring the potential of personalized
nutrition strategies tailored to individual metabolic profiles to
enhance weight loss outcomes.

Publications that do not mention any disease areas (n ¼ 99)
focus on general personalized nutrition recommendations using
machine learning methods. This includes the use of recom-
mender systems to tailor dietary recommendations [31] and
healthcare recommendations [32], proposing meal detection
algorithm using continuous glucose monitoring (CGM) [33],
predicting metabolic responses to dietary intervention [34],
predicting health outcomes based on individual physiological
and microbial interactions [35], and explore gut microbiome and
metabolomic signatures associated with weight loss and body
composition responsiveness across different dietary regimens
[36].
Precision nutrition applications using AI
From the included studies, the main applications of AI in

precision nutrition are 1) health optimization (n ¼ 106), 2)
disease prevention (n ¼ 60), and 3) disease management (n ¼
64). Each reviewed article was manually categorized into one or
more of these three categories.

Health optimization in the field of precision nutrition aims to
enhance individuals’ well-being through personalized nutrition
(or dietary) interventions using various AI approaches. These
interventions involve dietary strategies, including the use of
predictive models to assess the success of diets and the applica-
tion of machine learning to offer personalized diet recommen-
dations, often leveraging personal health or genetic data. Health
optimization involves conducting dietary intervention with
various methods, such as developing machine learning models to
offer personalized diets [29], designing AI applications based on
users’ specific health conditions and nutritional conditions [37],
integrating genetic information and diet information into a
personalized nutrition recommendation system [38], and uti-
lizing AI to design tailored lifestyle intervention to achieve
health optimization [39].

Disease prevention aims to reduce the incidence and impact
of diseases through personalized nutrition (or dietary) in-
terventions. Some disease prevention studies leverage machine
learning algorithms to derive personalized nutritional plans that
can prevent the onset of diseases such as reducing obesity levels
5

in both adults [40] and children [41]. Other disease prevention
research has applied machine learning models to predict disease
risks, such as obesity [42] and depression [43], by analyzing
clinical and nutritional variables. For recent diseases such as
COVID-19, machine learning methods can be used to identify
potential bioactive molecules in foods that target the
SARS-CoV-2-host gene–gene (protein–protein) interactome [27].
The identified gene connection can inform the design of nutri-
tional interventions against COVID-19 and other viral diseases.

Disease management encompasses a multifaceted approach
aimed at improving the treatment, control, and overall well-
being of patients diagnosed with various health conditions
through personalized nutritional interventions and targeted
strategies. Various approaches were used to implement effective
disease management, such as building an AI-driven platform to
support diabetes management through personalized recipe
identification, meal planning, and online food shopping [21,44].
Another study utilized a machine learning model to predict
enteral nutrition (EN) initiation for intensive care unit (ICU)
patients aiding in EN management [15].

Figure 3 illustrates the relationship between three AI-
powered precision nutrition applications and the specific dis-
ease areas they target. Studies utilizing AI and precision nutrition
for diabetes patients outnumber those for other diseases. Most of
these studies concentrate on diabetes management. Following
diabetes, cardiovascular diseases and cancers rank second and
third in the number of studies conducted. Unlike diabetes-
focused studies, these studies emphasize disease prevention for
cardiovascular diseases and cancers. For other disease areas, the
main focus is health optimization. Overall, AI-based precision
nutrition is understudied for other disease areas. However,
Existing literature provides evidence that nutrition is linked to
many health conditions, such as gastrointestinal disorders [45]
and mental health disorders [46]. More research is needed to
explore how AI-based precision nutrition could could aid in the
prevention and management these conditions.
Dataset released and normalized data type
Among the 198 reviewed articles, 135 explicitly mentioned

the use of �1 certain dataset, totaling 122 unique datasets.
Except for ten datasets that are not publicly available, remaining
datasets either have an open access link or can be requested from
the authors. These datasets span across five data types: 1) Dietary
(n¼ 62), 2) Evaluation and Survey (n¼ 46), 3) Biochemical (n¼
44), 4) Clinical (n ¼ 39), and 5) Anthropometric (n ¼ 32) [47].
We note that one dataset could belong to more than two types of
data. Table 1 lists the seven most commonly used public datasets
from reviewed articles, as well as the AI methods and Evaluation
metrics used from all relevant research. The full list of datasets
can be found in Supplemental Table 1 with four columns,
including titles, dataset link or availability, dataset description,
and dataset type [in terms of Anthropometric (A), Biochemical
(B), Clinical (C), Dietary (D), and Evaluation and Survey (E)]. We
believe that these descriptions can be helpful to current and
future researchers.

Dietary datasets consist of two main components: the dietary
intake data of research participants and food nutrition composi-
tion databases. Dietary intake data are primarily collected from
surveys, such as the INCA2 dataset [48]. The INCA2 dataset,
derived from a survey conducted between 2006 and 2007,
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includes individual food consumption records. It comprises sev-
en-day food diaries for 2,624 adults and 1,455 children, recor-
ded over several months to account for potential seasonality in
eating habits. Food nutrition composition databases are publicly
accessible and include examples such as the USDA National
Nutrient Database [49], AI4FoodDB [50], and FooDB [51]. These
databases are extensively used in research for recommending
personalized diets [52], implementing personalized nutrition
applications [53], and building recommender systems [54].

Evaluation and Survey datasets are mostly the data collected
from researchers’ proposed surveys or directly collected from
social media platforms or prototypes, such as recruited partici-
pants’ interviews, patients’ conversations with chatbots, partic-
ipants’ browsing history, and posts and feedback from the Reddit
subcommunities. For example, Bul et al. [21] used a web-based
semi-structured survey to ask individuals with diabetes about
the type of advice they expected from an application, as well as
whether they already used applications to monitor or improve
their physical activity, diet, or blood glucose levels. Apart from
using survey questionnaires to create a dataset for research
purposes, some researchers also generated data from research
studies. Figueroa et al. [55] generated data consisting of con-
versations with a chatbot involving 18 women aged between 27
and 41 years. These conversations are mostly about nutrition and
health information and can be valuable resources for future
research. Participants’ browsing history and posts and feedback
from social media, such as the Reddit subcommunities, were also
collected by researchers for predicting eating disorders [56] and
studying emotional eating behavior [57].
6

Biochemical datasets include microbiome data, physiological
data, and genetic/genomic data. Microbiome data are mostly gut
microbiome data collected from fecal samples, and they are
usually used for predicting metabolic responses [34], designing
personalized diets for patients [58], and disease prevention [59].
Physiological data may include cholesterol concentration, blood
glucose concentration or plasma glucose concentration, insulin
concentrations level, and hemoglobin A1c (HbA1c) concentra-
tion. These data are used for offering personalized nutrition
advice and disease management. Hillesheim et al. [60] used a
k-means clustering model to classify participants into three
metabotypes based on four biomarkers (triacylglycerol, total
cholesterol, HDL cholesterol, and glucose) to offer personalized
dietary advice. Shamanna et al. [61] used daily CGM and food
intake data to provide guidelines that would enable individual
patients to avoid foods that cause blood glucose spikes, thus
benefiting patients with type 2 diabetes. Genetic/genomic
datasets are mainly open-source public datasets. One such
example is the ChEMBL database, a manually curated database of
bioactive molecules with drug-like properties. It brings together
chemical, bioactivity, and genomic data to aid the translation of
genomic information into effective new drugs. Westerman et al.
[62] utilized the ChEMBL database to create a
machine-learning-based tool called PhyteByte. Given a protein
target as input, the tool generates a list of food compounds with
high confidence of eliciting relevant biological effects, along
with their source foods and associated quantities.

Clinical datasets are usually derived from three key sources:
clinical examination data, patient information data, and



TABLE 1
Seven most used public datasets from our reviewed literature.

Dataset Link Description AI methods used Evaluation metrics used

NHANES https://www.cdc.gov/
nchs/nhanes/

The National Health and Nutrition
Examination Survey (NHANES) is designed
to assess the health and nutritional status of
adults and children in the United States. The
survey is unique in that it combines
interviews and physical examinations.
NHANES collects data on the prevalence of
chronic and infectious diseases and
conditions (including undiagnosed
conditions) and on risk factors such as
obesity, elevated serum cholesterol levels,
hypertension, diet and nutritional status, and
numerous other measures. NHANES includes
clinical examinations, selected medical and
laboratory tests, and self-reported data.

Neural networks,
conventional AI methods,
ensemble learning,

R-squared, Chi-squared, P
value, accuracy,
precision, recall, F1 score,
confusion matrix, AUC,
AUROC, calibration plot,
t-test, Mann–Whitney U
test, sensitivity,
specificity,

USDA National Nutrient
Database for Standard
Reference

https://agdatacommons.
nal.usda.gov/articles/
dataset/USDA_National_
Nutrient_Database_for_
Standard_Reference_
Legacy_Release/
24661818

USDA National Nutrient Database: The
USDA National Nutrient Database for
Standard Reference (SR) is the primary
source of food composition data in the
United States, forming the basis for most
public and private food composition
databases. This is the final release of the
database in its current format. SR-Legacy will
remain a leading stand-alone food
composition resource and will be integrated
into the new modernized system currently
under development. SR-Legacy includes data
on 7793 food items and �150 food
components from SR28 (2015), with selected
corrections and updates .

Conventional AI methods,
neural networks,
ensemble learning, expert
system

t-test, ANOVA, accuracy

MIMIC-IV https://physionet.org/
content/mimiciv/1.0/

The Medical Information Mart for Intensive
Care (MIMIC)-IV database consists of
deidentified electronic health records for
patients admitted to the Beth Israel
Deaconess Medical Center. It contains 26
tables, including patient demographics,
diagnosis notes, and free-text notes.

Conventional AI methods,
representation learning,
ensemble learning

AUC, SHapley Additive
exPlanation (SHAP)

INCA2 https://www.data.gouv.
fr/fr/datasets/donnees-
de-consommations-et-
habitudes-alimentaires-
de-letude-inca-2-3/

The French dataset INCA2 was used to mine
relevant substitutions. This dataset results
from a survey conducted during 2006–2007
on individual food consumption. Seven-day
food diaries were recorded for 2624 adults
and 1455 children over several months,
accounting for possible seasonality in eating
habits.

Neural networks -

AI4FoodDB https://github.com/
AI4Food/AI4FoodDB

The AI4Food database (AI4FoodDB) gathers
data from a nutritional weight loss
intervention involving 100 overweight and
obese participants over the course of 1 mo.
AI4FoodDB is the first public database to
centralize food images, wearable sensor
data, validated questionnaires, and
biological samples collected from the same
intervention.

- -

FooDB foodb.ca FooDB (version 1.0) is a comprehensive
resource on food constituents, chemistry,
and biology, containing over 85,000
compounds. These data were accessed from
foodb.ca on 9/27/2019.

Neural networks,
reinforcement learning,
ensemble learning

F1 score, AUC

avocado_SCFAs https://github.com/
wt1005203/McMLP

The data utilized in this study comprise
synthetic data generated by the microbial
consumer-resource model and real data
sourced from 6 dietary intervention studies.
These datasets represent interactions
between food, gut microbes, and metabolic
responses.

Neural networks Spearman's rank
correlation coefficient,
predictive performance
metrics

Abbreviations: AI, artificial intelligence; ANOVA, analysis of variance; AUC, area under the curve; AUROC, area under the receiver operating
characteristic.
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molecular data. Clinical examination data include results from
medical examinations and selected laboratory tests, which are
instrumental in identifying disease risk factors [63], preventing
diseases [64], and developing personalized nutrition applica-
tions [65]. One notable example is the NHANES dataset [66],
frequently utilized in research. It comprises clinical examina-
tions, medical and laboratory tests, and self-reported data,
focusing on the prevalence of chronic and infectious diseases
(including undiagnosed conditions) and risk factors such as
obesity, high serum cholesterol, hypertension, diet, nutritional
status, and other health indicators. In addition to clinical ex-
amination data, patient information data form another critical
component of clinical datasets. Patient information data are
usually collected in EHRs in healthcare systems, for example,
patient demographics, diagnosis notes, and free-text notes. An
example is the Medical Information Mart for Intensive Care
(MIMIC)-IV database [67], containing deidentified EHRs of pa-
tients admitted to the Beth Israel Deaconess Medical Center.
Wang et al. [15] utilized the MIMIC database to construct a
model assisting in early evaluation of EN for patients in ICUs.
The final type of clinical dataset is molecular data, typically
obtained from blood or fecal samples, which supports the
development of precision nutrition applications. These data
provide molecular-level information from biological samples.
For instance, Karakan et al. [58] used fecal samples from a cohort
of 25 patients diagnosed with mixed irritable bowel syndrome to
develop personalized diets for each patient.

Anthropometric datasets are usually the information about
body composition, body mass index (BMI), weight measure-
ments, and height. These data are typically combined with other
biomedical data and clinical data to serve as features for machine
learning algorithms. Kan et al. [28] developed a
machine-learning-based model to predict the optimal dose of
botanical combination for treating eye fatigue using 504 features
collected from 303 subjects. These features include anthropo-
metric features such as the body fat rate and eye-related indexes,
demographic features such as gender and ethnicity, and clinical
features such as diastolic blood pressure. Other studies also uti-
lized a combination of anthropometric data with other data types
to address challenges in type 2 diabetes prevention [68], and
studying the correlation of psychological mechanisms and
weight gain [69].

We found that researchers frequently created their own
datasets for precision nutrition and AI research. Out of 135 ar-
ticles utilizing �1 dataset, only 18 employed publicly available
datasets. Of the 117 articles that generated their own datasets,
only eight have made their datasets publicly accessible. The
remaining datasets are either available upon request or remain
private. This scarcity of easily accessible datasets presents sig-
nificant challenges for researchers to study precision nutrition
and AI.
AI methods and evaluation metrics
AI methods

Various AI methods have significantly advanced precision
nutrition research, playing a crucial role in uncovering new
health patterns from patient data, developing personalized
nutritional recommendation systems, and creating healthcare
management systems. Out of the 198 reviewed articles, 172 have
utilized more than one AI method in their research. The
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remaining 26 articles are either literature reviews or do not
explicitly specify the machine learning methods used. Instead,
they only mention the type of task they aim to accomplish with
machine learning models, such as modeling high-dimensional
data as scores [70]. The AI methods employed in the 172 arti-
cles are categorized into 8 distinct categories: 1) conventional AI
methods (n ¼ 129), 2) ensemble learning (n ¼ 87), 3) neural
networks (n ¼ 61), 4) representation learning (n ¼ 14), 5) GenAI
(n ¼ 13), 6) expert systems (n ¼ 12), 7) logic methods (n ¼ 8),
and 8) reinforcement learning (n ¼ 4).

Apart from these AI methods, several studies have utilized or
evaluated smart tools (n ¼ 7) related to precision nutrition and
AI research. The Viome AI Recommendation Engine [71] lever-
ages domain knowledge and machine-learning-based models to
optimize food and supplement recommendations for maintain-
ing functional homeostasis. The MyBehavior app [72] utilizes a
multiarmed bandit machine-learning-based model to provide
automated, personalized feedback for physical activity and di-
etary behavior changes. The Food4Me FFQ [73] is a validated
web-based Food Frequency Questionnaire designed for dietary
intake data collection. Snap-n-Eat [74] is a mobile food recog-
nition system that identifies food items and estimates their
nutritional content from smartphone images. EZNutriPal [75] is
an interactive diet monitoring system that processes unstruc-
tured mobile data, such as speech and free-text, for dietary
recording and personalized nutrition tracking. The iDietScore
meal recommender system [76] provides personalized meal
planning for athletes and active individuals through a rule-based
expert system. Finally, the HeartMan decision support system
(DSS) [77] is a mobile-health-based clinical DSS designed to
assist congestive heart failure patients in self-managing their
disease through personalized recommendations.

Conventional AI methods are the most commonly used AI
methods overall. Conventional AI methods include rule-based AI
methods that operate on predefined rules and logic. In our
reviewed literature, conventional AI methods include regression
methods such as support vector machine (SVM) (n ¼ 17), linear
regression (n ¼ 8), and generalized linear model (n ¼ 3); clus-
tering methods such as k-means (n ¼ 10), k-nearest neighbors (n
¼ 6), hierarchical (n ¼ 4), and Gaussian mixture model (n ¼ 2);
feature extraction and selection methods such as elastic net (n ¼
7), attributable components analysis (n ¼ 3), least absolute
shrinkage and selection operator (LASSO) (n ¼ 3), principal
component analysis (PCA) (n ¼ 3), linear discriminant analysis
(LDA) (n ¼ 2), Pearson correlation (n ¼ 1), canonical correlation
analysis (n ¼ 1), and inverse document frequency (n ¼ 1), and
other classical methods such as decision tree (n¼ 21) and logistic
regression (n ¼ 20).

Regression is a conventional statistical method used to
examine the relationship between a dependent variable (target)
and one or more independent variables (predictors) [78]. In our
reviewed literature, regression is primarily used to predict
numeric values among various applications, such as weight loss
[29,79] and weight gain [80].

Clustering is an unsupervised machine learning technique
that groups a set of objects into clusters, where objects within the
same cluster share greater similarity with each other than with
those in different clusters [78]. K-means algorithm is mostly used
as a clustering method to identify patient subgroups. For
example, Hillesheim et al. [60] utilized k-means to categorize
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research participants into three distinct metabotypes based on
four biomarkers, aiming to provide more targeted dietary advice.
Vervoort et al. [69] applied k-means to identify subtypes among
young individuals with obesity, based on psychological mecha-
nisms that explain weight gain.

Feature extraction involves transforming the original data
into a new, more informative and concise set of features.
Conversely, feature selection focuses on choosing a subset of the
most relevant features from the original data,helping to reduce
the dimensionality of the feature space, enhance the model’s
generalization ability, and reduce computational requirements
[81]. Feature extraction and selection methods are primarily
used in research on diabetes, cardiovascular diseases, and can-
cer, with applications in disease prevention, health optimization,
and disease management. These methods are typically employed
as a dimensionality reduction tool [25,82], feature trans-
formation tool [83,84], and tools for constructing sparse models
[85,86].

In addition to the converntional AI methods, the second most
commonly used method in the reviewed articles is ensemble
learning, which combines multiple models to create a more
robust and accurate model than any single constituent model
[87]. For example, Tily et al. [88] used gradient boosting to
predict postprandial glycemic response (PPGR) using gut
microbiome activity, anthropometric factors, and food macro-
nutrients as features. This work can aid in disease prevention, as
managing PPGR is a key strategy in reducing risk of chronic
metabolic diseases. To optimize health, Hern�andez-Hern�andez
et al. [89] used random forest and XGBoost to generate food
exchange lists (FEL). A high-quality FEL can enhance a healthy
diet and lower risk of developing diabetes. In terms of machine
learning tasks, most ensemble learning methods are utilized to
construct either classification or regression models. Regression
models are typically used for predicting continuous biochemical
metrics such as glycemic responses and postprandial responses
[88, 90]. In contrast, classification models are commonly
employed for biomarker discovery, identifying elderly patients
with malnutrition, and predicting the occurrence of potential
diseases or disorders such as obesity [24], depression [43], and
diabetes [91,92].

Neural networks are the third most popular method in the
precision nutrition studies we reviewed. A neural network is an
AI technique that enables computers to process data in a manner
inspired by the human brain [93]. Neural networks have been
primarily applied in diabetes and cancer studies focusing on
disease prevention and health optimization. In terms of machine
learning tasks, neural networks have been predominantly used
for constructing classification models. These classification
models are used for food classification and recognition [94],
diabetes prevention [64,95], cancer prevention [96], and pre-
dicting metabolic responses [34].

Representation learning is a deep learning process where al-
gorithms identify and extract meaningful patterns from raw data,
creating representations that are easier to interpret and utilize
[97]. For example, Abuhassan et al. [98] proposed an
attention-based deep learning classification model to identify
Twitter users at risk of getting eating disorders. They used
Bidirectional Encoder Representations from Transformers
(BERT) to extract sentence and word embeddings as inputs to
their proposed model. In another study [38], the continuous
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skip-gram model is employed to generate word embeddings for
unknown grocery products, which are then fed into an
LSTM-based model for product categorization. Finally, these
categorization results were incorporated into a decision recom-
mendation system based on genetic algorithms.

GenAI are most recent approaches that use neural networks to
identify the patterns and structures within existing data to
generate new and original contents [99]. Generative AI are
typically used for providing dietary and lifestyle recommenda-
tions [55,100,101]. Some researchers construct specialized
chatbots while others utilize existing chatbots. For example,
Niszczota, P. & Rybicka [30] utilized ChatGPT to offer nutri-
tional advice and then evaluated the advice in terms of safety,
accuracy and attractiveness.

Expert Systems are AI softwares designed to utilize the
knowledge of human experts to develop a system capable of
solving specific problems [102]. In our reviewed literature,
expert systems are used for constructing mobile applications and
DSSs aimed at promoting health optimization through person-
alized nutritional advice designed by nutritionists [68,75,
103–105] and promoting disease management for diabetes pa-
tient by providing actionable suggestion to support
self-management of chronic conditions [82].

The logic method refers to the use of formal logical methods
and principles to design and implement algorithms and models
[106]. Logic methods from our reviewed articles are primarily
applied in health optimization and disease management across
various different applications. Such as implementing a mobile
app for personalized meal planning [37], providing personalized
dietary recommendation [107], building a drug and food
recommendation system for type 2 diabetes patient [108],
implementing applications for healthcare recommendation [32,
109], building a DSS for patients with multiple chronic condi-
tions [44], and developing a learning-based system for diagnosis
and personalized management of diabetes mellitus [110].

Reinforcement learning is a type of machine learning in
which an agent learns to make decisions by interacting with an
environment [111]. In our precision nutrition review, rein-
forcement learning has been applied to provide dietary sugges-
tions by receiving rewards from nutritionist feedback on food
recommendations [112] or from user feedback to offer person-
alized dietary and lifestyle recommendations [72].

The top three most popular AI methods, along with their
subcategories, are illustrated in the Sankey diagram in Figure 4.
Conventional AI methods, ensemble learning, and neural net-
works stand out significantly compared to other methods. Con-
ventional AI methods are the most frequently used approach for
studying diseases and applications. Figure 4 also depicts the
relationship between the top three most researched diseases, AI
methods, and AI applications. This suggests that in the field of
precision nutrition and AI, researchers favor classical methods
due to their well-defined procedures and evaluation standards.
Very few researchers employed novel methods such as rein-
forcement learning and GenAI.

Besides the top three most researched diseases and the AI
methods used to study them, there are other notable diseases
that did not make it into Figure 4 but are worth mentioning, such
as gastrointestinal disorders, neurodegenerative diseases, eating
disorders, and mental health disorders. Gastrointestinal disor-
ders were primarily studied using ensemble learning methods for
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health optimization and disease management. Examples include
recommending personalized diets based on analyses of partici-
pants’ stool and blood samples [71], as well as predicting the
stages of chronic kidney disease to help slow its progression
[113]. Neurodegenerative diseases, such as Alzheimer’s disease
(AD), were studied using ensemble learning methods for health
optimization. Alashwal et al. [114] used a random forest classi-
fier to identify the best features for differentiate AD patients and
healthy patients. These features included nutritional measures,
genes, and cognitive performance. Eating disorders were pri-
marily studied for disease prevention using conventional AI
methods and representation learning methods. Eating disorders,
such as Binge-eating disorder, are predicted with correlation
methods based on ecological momentary assessment data [115].
Another example is from Abuhassan et al. [98], who developed a
multimodal deep learning model called EDNet to predict po-
tential eating disorder patients. Mental health disorders such as
depression used neural networks, ensemble learning methods,
and conventional AI methods for disease prevention. For
example, Hosseinzadeh Kasani et al. [43] used nutrition-related
markers, such as energy, water, protein, fat, carbohydrates, and
fiber, for early diagnosis of depression.

Evaluation
In the reviewed articles, we categorize different types of

evaluation into statistical and machine learning metrics, health
indicators and dietary assessment metrics, usability and perfor-
mance metrics, and surveys and questionnaires.

Statistical and machine learning metrics evaluate the perfor-
mance of AI models in precision nutrition.

The top ten evaluation metrics relate to AI model perfor-
mance in precision nutrition are accuracy (n ¼ 39), precision (n
¼ 29), recall (n ¼ 25), F1 score (n ¼ 22), area under the receiver
operating characteristic curve (AUROC) (n ¼ 12) (n ¼ 10), P
value (n ¼ 7), sensitivity and specificity (n ¼ 6), and mean
squared error (MSE) (n ¼ 5) and are illustrated in Figure 5. Ac-
curacy is the most commonly used metric in the reviewed studies
and measures the proportion of correct predictions among all
predictions [116]. Precision measures how accurately the model
identifies positive cases out of all the cases it predicts as positive,
and a high precision indicates that the model makes fewer false
positive errors and performs reliably in its positive predictions
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[116]. Recall measures the proportion of true positive instances
identified by themodel among all the true positive instances, and
a high recall indicates the model’s strength in identifying true
positives and minimizing missed positive instances [116]. F1
score is the harmonic mean of precision and recall, which en-
sures a balanced measure of a model’s accuracy [116]. The
AUROC evaluates the model’s ability to distinguish between
classes by plotting the true positive rate against the false positive
rate [117]. The P value (n ¼ 7) assesses the statistical signifi-
cance of the predictions [118]. Similar to precision and recall,
sensitivity and specificity measure the model’s ability to accu-
rately identify true positives and true negatives [119]. MSE
measures the mean squared difference between actual and pre-
dicted values, evaluating regression models that predict contin-
uous outcomes such as BMI and blood glucose levels [120].

In addition to Figure 5, Figure 6 illustrates the distribution of
evaluation metrics across different data types. The evaluation
metrics are distributed relatively evenly across different data
types, indicating no clear preference or tendency for a specific
metric to be used more frequently with any particular data type.
However, precision and recall are used less frequently in
biochemical data types. This is likely because biochemical data
are more commonly evaluated using health indicators and di-
etary assessment metrics, such as glycemic control metrics [14],
rather than the top ten evaluation metrics for AI outcomes shown
in Figure 5.

Including the top metrics listed above, we summarize all the
model-performance-related metrics in our reviewed articles.
Statistical and hypothesis testing metrics include cosine distance,
P value [35], R, R-squared [88], chi-squared [63], Spearman’s
rank correlation coefficient [34], Pearson correlation coefficient
[28], t-test, analysis of variance, [75], and Mann–Whitney U test
[121]. General model performance metrics include standard er-
rors, out-of-bag error [110], bias, variance, training loss, vali-
dation loss [13], and error rate [84]. Task-related machine
learning metrics evaluate the performance of models in either
classification or regression tasks. Classification metrics assess a
model’s ability to classify data into categories and include: area
under the curve (AUC), AUROC, M-AUC [122], precision, recall,
F1 score [123], accuracy, misclassification rate [26], and clas-
sification rate [124]. Regression metrics evaluate a model’s
performance when predicting continuous outcomes, such as
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FIGURE 6. Top 10 evaluation metrics and their numbers when applied to ABCDE data.
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blood glucose levels, and include: MSE [125], pseudo-R-squared
[79], root-mean-squared error, and odds ratios [126].

Health indicators and dietary assessment metrics are quanti-
fiable measures used to assess an individual’s health status and
adherence to certain nutritional recommendations. Health in-
dicators, which reflect changes in clinical outcome before and
after AI-assisted precision nutrition interventions, play a signif-
icant role in the overall assessment process. These indicators can
be categorized into 3 main groups: metabolic, cardiovascular,
and cancer-related metrics. In our reviewed articles, all 3 in-
dicators are mainly utilized to assess the effectiveness of
personalized nutrition intervention. Metabolic indicators, such
as BMI, body fat percentage, waist circumference [127], HbA1c
11
levels, fasting blood glucose, insulin sensitivity [61], etc., serve
as measures of weight control among individuals with over-
weight conditions caused by illness such as type 2 diabetes.
Cardiovascular indicators encompass blood pressure and blood
lipids [128], focusing on managing hypertension and improving
cardiovascular health. Cancer-related indicators involve genetic
scores. Dietary assessment metrics evaluate dietary patterns and
adherence to certain nutritional recommendations, which
include dietary intake data and MED diet adherence, evaluating
the similarity of an individual’s diet to the standard MED dietary
pattern based on an Australian survey that contains 14 relevant
questions [100], HEI [129], frequency of dietary lapses [130],
and qualitative healthy food assessment [131].
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Usability and performance metrics, such as latency [132],
computational efficiency, coupling, and cohesion metrics [133],
assess the performance and user-friendliness of the AI systems.

Surveys and questionnaires, such as nutrition questionnaires
[77], were used to gather user feedback and evaluate the impact
of the AI system on users’ quality of life.
Minority and culture
Historically, many racial/ethnic minority groups and people

with lower socioeconomic status have seen a higher prevalence
of illnesses and death from chronic diseases in the United States.
Despite advancements in improving overall health in the United
States, racial and ethnic disparities still persist [134]. Under-
standing and addressing the unique nutritional needs of minor-
ities is key to developing effective and personalized nutritional
strategies for at-risk populations.

Among the 198 reviewed articles, 12 articles were identified
to include minority information. These articles were further
reviewed and individually analyzed for factors commonly
observed to affect health outcomes in minority groups, such as:
1) socioeconomic factors, 2) cultural sensitivity, 3) technology
accessibility/digital literacy, 4) personalized nutrition needs, 5)
ethical and privacy concerns, 6) community-based approaches,
and 7) policy and advocacy. This section synthesizes findings
from these 12 selected articles and identifies the targeted key
factors, practical applications, and recommendations for future
research in AI and precision nutrition.

Socioeconomic factors, such as income level, education, and
access to resources, can significantly impact health outcomes. Of
the 12 articles referencing minority groups, 8 included infor-
mation related to the influence of socioeconomic factors on mi-
nority populations [21,55,64,68,92,135–137]. Several studies
examined the impact of socioeconomic status on health out-
comes. Articles in this category highlighted the increased risks of
certain health conditions, such as maternal mortality [135],
hypertension [136], and type 2 diabetes mellitus [21,68,137], in
low socioeconomic minority populations. Lifestyle factors,
including limited abilities to maintain healthy lifestyles, health
literacy, and access to healthcare and quality nutrition, were
observed to contribute to disparities in health outcomes among
minority populations. To meet the needs of low socioeconomic
minority communities, many of these articles highlighted the
importance and need for more targeted health interventions,
such as the inclusion of budget-friendly recipes and budget su-
permarket chains [21] and display of recipe cost for individual
budgeting [68]. In addition, a better understanding of low so-
cioeconomic populations can be achieved through the targeted
recruitment of participants from structured health programs
intended for low-income individuals such as Supplemental
Nutrition Assistance Program Education [55], and the repre-
sentation for socioeconomic diversity through the selection of
socioeconomic-related demographics such as education level
and poverty ratio [64] and the inclusion of diverse socioeco-
nomic classes in studies [92].

Cultural sensitivity in precision nutrition involves the recog-
nition and integration of diverse cultural dietary practices, pref-
erences, and traditions into personalized nutritional guidance
and interventions. Of the 12 articles in this data set, four included
references to cultural sensitivity, such as having more interna-
tional representation in cuisine options for recipe platforms [21]
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and recommender systems [136], consideration of cultural life-
styles and values program designs [68], and Native American
representation [137]. These studies emphasized the need to
include a diverse range of cultural dietary practices, preferences,
and traditions in nutritional guidance. Studies in this category
suggested including a broad range of recipes for diverse ethnic
groups particularly for Asian subgroups [21], African populations
[21], and Native Americans [137] to provide more culturally
specific resources for individuals. Tailoring educationalmaterials
to cultural and linguistic needs of minority groups, such as
providing translations for non-English speakers [68], was also
discussed as a way to improve accessibility for individuals. These
methods demonstrated an improvement in adherence and effec-
tiveness of health interventions in diverse populations.

Technology Accessibility/Digital Literacy refers to the design
and implementation of digital tools and platforms to ensure that
they can be used and understood effectively by everyone. Six
articles referenced technology accessibility and digital literacy,
particularly for minority groups who may face unique challenges
due to the intersectionality of other limiting factors [21,55,68,
136–138]. One study emphasized the need to improve accessi-
bility for individuals with visual impairments [21], which is
common among individuals with diabetes, through the inclusion
of screen reader compatibility and larger text options. Few of
these studies also noted the importance of offering training
and/or guidance for users with lower digital literacy [68] and
incorporating culturally familiar tools, such as YouTube and
WhatsApp [55], and other culturally appropriate AI-powered
assistants and smart speakers [137] to make digital tools more
accessible for minority communities. Another study highlighted
the socioeconomic considerations of technology accessibility by
ensuring that all participants have access to study resources (for
example, smartphones and Internet data plans) as a prerequisite
for participating in the study [138].

Ethical and privacy concerns are critical when designing and
implementing health interventions, especially those involving
digital technology. Four articles in this dataset highlighted mi-
nority participants’ privacy concerns [55] and the importance of
adhering to ethical data collection practices [68,138], such as
Institutional Review Board (IRB) guidelines, and Health Insur-
ance Portability and Accountability Act (HIPAA) to maintain
trust and encourage participation in minority populations [137].
Through participant interviews, 1 study highlighted minority
participants’ privacy concerns with health chatbots, particularly
regarding location data. Researchers in this study discussed how
providing participants with transparency about how data are
used can help mitigate these concerns, build trust, and improve
participation rates [55].

Personalized nutrition needs involve tailoring dietary rec-
ommendations to individual needs and considering unique risks
and preferences, which can significantly enhance the effective-
ness of health interventions, particularly for minority pop-
ulations with diverse dietary habits and health challenges. Three
articles in this dataset discussed methods that included unique
personalization features based on user backgrounds and high-
lighted the importance of tailoring nutrition advice [68,136,
137]. For example, 1 article utilized interviews and surveys to
tailor nutrition education and lifestyle programs to the unique
risks faced by underserved farmworkers, acknowledging their
specific environmental and biological factors [68]. Additionally,
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2 articles discussed the use of recommender systems [136] and
virtual assistant technology such as Amazon’s Alexa [137] to
make dietary advice more relevant and to enhance user
engagement and adherence to dietary plans. These findings
support the tailored approach that personalized nutrition and AI
can achieve in supporting diverse populations more effectively
and improving outcomes in minority communities.

For community-based approaches, four articles in our dataset
described the use of interviews, surveys, and built in community
platforms to highlight the effectiveness of community-driven
interventions in minority populations [21,55,68,135]. One
study described the use of interviews and surveys of vulnerable
and underserved farmworkers in California, including racia-
l/ethnic minorities and low-income individuals, to guide soft-
ware development tailored to the needs of the target users [68].
In this study, user feedback was used throughout the develop-
ment process in determining desirable aspects such as user lan-
guage, more formal specification of features and functionality of
the app, and evaluation criteria. Through community involve-
ment, researchers described the value in addressing the unique
needs of various target groups in making informed health de-
cisions in a personalized and adaptable manner. Other examples
included providing community-driven platforms to determine
recipe popularity and partnering with local organizations and
programs to recruit participants. These articles demonstrated the
effectiveness of aligning interventions with local needs and
preferences through improving engagement, and ultimately lead
to better health outcomes for target populations

Policy and advocacy underscore the need for systemic
changes and policy support to improve health outcomes. Two
articles in this section focused on the role of policy and advocacy
in enhancing health interventions, particularly for minority
populations. One study briefly discussed the need for supportive
policies to facilitate the dissemination of effective weight loss
programs widely through innovative health technologies [139].
Another study called on intensifying efforts to reduce maternal
mortality in low-income countries through global standards,
technical support, and accountability measures [135]. These
studies showed that policy and advocacy can play a pivotal role
in improving health outcomes and ensuring that health in-
terventions are effective and inclusive for all populations.

Discussion

In this review, we systematically examined the AI for preci-
sion nutrition literature on publication venues, disease targeted,
precision nutrition applications using AI, datasets, AI methods
and evaluation metrics, and minority and culture. The reviewed
literature highlights a rapidly growing and expanding field. By
summarizing disease areas, available datasets, applicable AI
methods, and many more future topics, we believe that this
literature review summarized available materials and possible
directions for future research in precision nutrition and AI.

Several gaps have been identified in precision nutrition
studies. First, the use of novel AI methods in precision nutrition
remains limited. AI, especially GenAI, has become a ground-
breaking tool across various fields, including data generation,
drug discovery [140], and healthcare [141]. Among the studies
we reviewed, there are 13 studies employing GenAI to give di-
etary and lifestyle recommendations [55,100,101] and generate
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nutritional advice [30]. Apart from the limited use of GenAI, our
results indicate that deep representation learning and deep
neural networks are also not widely adopted in precision nutri-
tion studies. Deep representation learning and deep neural net-
works could be a very useful tool in precision nutrition studies.
Abuhassan et al. [98] developed a multimodal deep learning
model called EDNet, using historical tweets, user biographies,
and online behaviors from Twitter to classify user engagement
with eating disorder content, achieving �94.32% accuracy and
93.91% F1 score, significantly outperforming baseline methods.
This is one of the few studies to employ deep neural networks,
demonstrating their high effectiveness in identifying
nutrition-related diseases.

The second gap in precision nutrition research is the lack of
high-quality, publicly available labeled datasets. According to
our findings in the dataset section, most researchers in this field
create their own datasets. The availability of more publicly
accessible dietary, evaluation and survey, biochemical, clinical,
and anthropometric datasets would significantly facilitate the
application of advanced AI methods in precision nutrition
studies. To fully harness the potential of integrating diverse data
types—including patient information, dietary intake, gut
microbiome profiles, and genetic data—we propose the devel-
opment of a digital twin of an individual using a foundational
model. This digital twin could offer a dynamic, personalized
representation of an individual’s health, providing deeper in-
sights into nutritional needs and enabling more effective disease
prevention strategies. This approach has the potential to revo-
lutionize precision nutrition by integrating multimodal data for
more accurate and effective health interventions.

Furthermore, there are numerous challenges in applying AI to
precision nutrition. A major challenge is bias within the training
data, which is often carried over to the trained model. For
instance, racial [142] and gender biases [143], along with issues
like imbalanced samples or incomplete data, can substantially
affect the effectiveness of AI applications in precision nutrition.
To identify articles addressing bias, we searched for those that
included demographic and cultural variables in their dataset
descriptions, as such variables may introduce potential biases.
Two studies have addressed cultural biases [55,137]. For
example, Figueroa et al. [55] design chatbots in Spanish and
address the linguistic bias present in most health chatbots, which
predominantly operate in English. Other articles [64,68,92,135,
136,138,139] do not address bias but include variables like
gender, ethnicity, or education in their datasets as predictive
features in machine learning models. Another challenge is hal-
lucinations from GenAI models, which can mislead nonexperts
users. According to a survey conducted by Ji et al. [144], these
hallucinations can be categorized into hallucinations from data,
hallucinations from training and inference, and metrics
measuring hallucinations. To identify articles that discussed
hallucinations, we looked for those utilizing LLMs. In our
reviewed literature, only one article mentions hallucinations
[30]. Last but not least, one major challenge in using AI for
precision nutrition are ethical issues and concerns about user
privacy. Ethical challenges require that AI systems be designed
and implemented to upholds human rights, fairness, and trans-
parency. To examine ethical considerations, we searched for
articles with ethical data use statements. In our reviewed liter-
ature, Thomas et al. [145] created a tutorial with guiding
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principles and a checklist to help nutrition researchers address
ethical issues in AI and machine learning. Other researchers
addressed this issue by obtaining ethical approval from author-
ities [22,146]. In summary, addressing biases, mitigating hallu-
cinations, and upholding ethical principles are essential for the
reliable and equitable application of AI in precision nutrition.
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