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ABSTRACT

Managing diabetes in patients on peritoneal dialysis (PD) is challenging due to the combined effects of dietary glucose, glucose from
dialysate, and other medical complications. Advances in technology that enable continuous biological data collection are transforming
traditional management approaches. This review explores how multiomics technologies and artificial intelligence (AI) are enhancing
glucose management in this patient population. Continuous glucose monitoring (CGM) offers significant advantages over traditional
markers, such as hemoglobin Alc (HbAlc). Unlike HbAlc, which reflects an mean glucose level, CGM provides real-time, dynamic glucose
data that allow clinicians to make timely adjustments, leading to better glycemic control and outcomes. Multiomics approaches are valuable
for understanding genetic factors that influence susceptibility to diabetic complications, particularly those related to advanced glycation end
products (AGEs). Identifying genetic polymorphisms that modify a patient's response to AGEs allows for personalized treatments, potentially
reducing the severity of diabetes-related pathologies. Metabolomic analyses of PD effluent are also promising, as they help identify early
biomarkers of metabolic dysregulation. Early detection can lead to timely interventions and more tailored treatment strategies, improving
long-term patient care. Al integration is revolutionizing diabetes management for PD patients by processing vast datasets from CGM, ge-
netic, metabolic, and microbiome profiles. AI can identify patterns and predict outcomes that may be difficult for humans to detect, enabling
highly personalized recommendations for diet, medication, and dialysis management. Furthermore, Al can assist clinicians by automating
data interpretation, improving treatment plans, and enhancing patient education. Despite the promise of these technologies, there are
limitations. CGM, multiomics, and AI require significant investment in infrastructure, training, and validation studies. Additionally, inte-
grating these approaches into clinical practice presents logistical and financial challenges. Nevertheless, personalized, data-driven strategies
offer great potential for improving outcomes in diabetes management for PD patients.
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Statements of significance

The review highlights novel approaches that combine multiomics technologies with artificial intelligence to personalize the nutritional
management of diabetes in patients undergoing peritoneal dialysis (PD). Specifically, we highlight how continuous glucose monitoring, alongside
genomic, metabolomic, and microbiome data, can enable highly individualized treatment plans, addressing unique glycemic control challenges in
this patient population—a significant advancement beyond traditional hemoglobin Alc monitoring and standard PD protocols.

Abbreviations: AGE-R1, AGE receptor 1; AGEs, advanced glycation end products; Al, artificial intelligence; CGM, continuous glucose monitoring; CKD, chronic
kidney disease; DKD, diabetic kidney disease; EPS, encapsulating peritoneal sclerosis; ESRD, end-stage renal disease; GLO1, Glyoxalase 1; HbAlc, hemoglobin Alc;
HD, Hemodialysis; ML, machine learning; PD, peritoneal dialysis; PDE, peritoneal dialysis effluent; PET, peritoneal equilibration test; RAGE, receptor for advanced
glycation end products; SCFAs, short-chain fatty acids.
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Introduction

Approximately 10% of the adult population worldwide has
chronic kidney disease (CKD), and over 2,000,000 people with
end-stage renal disease (ESRD) worldwide receive lifesaving
dialysis, with >80% of these patients living in affluent countries
[1]. Among the dialysis options, peritoneal dialysis (PD) is
lower-cost [2] and home-based, which requires the patient or
caregiver to manage many aspects of the treatment at home on a
regular and cyclical daily schedule. Patients who receive PD
compared with hemodialysis (HD) tend to be younger, of
non-Hispanic White ethnicity, married, more physically inde-
pendent, have higher education, live with others, and have fewer
pre-existing morbidities [3]. In North America, PD is used by 9%
of patients with ESRD in the United States, 25% in Canada, and
58% in Mexico [1]. Diabetes is the major cause of ESRD [4] and
accounts for 45% of incident cases in North America [5]. Patients
with diabetes and ESRD have significantly higher mortality and
morbidity compared with those with either condition alone.
Patients with diabetes receiving PD treatment face unique chal-
lenges in self-managing their diseases with a higher lifestyle
modification, medication, and treatment burden compared with
in-center HD patients who can rely more on specialized health-
care professionals to help with their life-sustaining dialysis
treatments [5]. For example, in addition to having to manage
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hyperglycemia from dietary carbohydrates, these patients also
must contend with significant carbohydrate loads from
glucose-based PD solutions [6]. Glycemia management in ESRD
is further compounded by the limitations of self-monitoring
blood glucose and hemoglobin Alc (HbAlc) levels [4] that do
not accurately support real-time glucose control in this popula-
tion. Recent advances in multiomics technologies and contin-
uous glucose monitoring (CGM) offer new insights and
opportunities for personalized dietary and glycemia manage-
ment strategies to improve outcomes and quality of life for pa-
tients with diabetes undergoing PD (Figure 1).

Nutritional Needs and Dietary Challenges

Diet plays a crucial role in prevention, treatment, and the
overall management of CKD and diabetes and is particularly
challenging in diabetic patients receiving PD. As CKD progresses
to ESRD, disruptions in protein and energy balance occur [7],
along with altered acid-base regulation [8] and hormonal
dysfunction [9] leading to complications such as bone mineral
disease [10] and anemia [11]. Nephrologists and renal dietitians
work closely with patients to manage these issues through a
combination of nutrition and medications. However, continued
declines in kidney function lead to nitrogenous waste accumu-
lation from protein catabolism that can impair taste and appetite,
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FIGURE 1. Multiomics and Al integration in diabetic PD management. The integration of multiomics strategies and Al in the treatment of diabetes
in patients receiving PD treatment aims to enhance personalized treatments and significantly improve patient quality of life and clinical outcomes.
The multiomics strategies include CGM for effective glucose management, utilization of genetic testing to identify individuals with a higher risk of
susceptibility to tissue damage from AGEs in diabetic complications, metabolomics for identifying PDE biomarkers in DKD, and gut microbiome
profiling to develop personalized nutrition strategies. Additionally, Al and ML are employed to implement RPM programs, optimizing healthcare
outcomes through a comprehensive and individualized approach for managing diabetes in patients undergoing PD. Abbreviations: AGEs, advanced
glycation end products; Al, artificial intelligence; CGM, continuous glucose monitoring; DKD, diabetic kidney disease; PD, peritoneal dialysis; PDE,
peritoneal dialysis effluent; ML, machine learning; RPM, remote patient management.
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mediated by genetic differences in taste perception [12],
whereas uremia affects gut microbiota [13] and disrupts nutrient
absorption. Muscle wasting often develops as CKD progresses to
ESRD [14], with an accelerated aging effect [15] that resembles
the decline in physical function and independence in elderly
individuals [16]. Protein-energy wasting is common and neces-
sitates tailored dietary interventions and nutritional therapy that
not only helps manage complications, such as electrolyte im-
balances and bone disorders, but may also delay the need for
dialysis [17]. After dialysis initiation, dietary management re-
mains essential for many aspects of disease management in
dialysis patients [18]. For example, dietary protein-energy
intake [19], sodium [20,21], calcium [22], magnesium [23,
24], selenium [25], phosphate [26], potassium [27], fluids [28],
water-soluble vitamins [29], and vitamin D [30] each require
special consideration and management.

The glucose used in PD solutions, which acts as an osmotic
agent for fluid removal, presents an additional challenge for this
patient population. This glucose is absorbed directly into the
bloodstream, potentially leading to continuous increases in blood
glucose levels, especially during ongoing dialysis sessions. This
effect is particularly significant in patients known as high trans-
porters [31], where glucose is rapidly absorbed from the dialy-
sate, potentially leading to severe hyperglycemia. In such cases,
adjustments to glucose concentrations in dialysis solutions can be
used as a management strategy. Alternatively, osmotic agents,
such as icodextrin, can be used during long dwell times to mini-
mize glucose absorption and manage hyperglycemia effectively
[32]. Dietary carbohydrates impact blood glucose levels based on
their glycemic index and the body’s metabolic response [6].
Foods with a high glycemic index may cause rapid spikes in blood
glucose levels, whereas foods with a low glycemic index led to
more gradual and controlled increases. Effective management of
diabetes requires careful meal planning to synchronize carbohy-
drate intake with dialysis schedules and insulin therapy, ensuring
stable blood glucose levels throughout the day. Additionally, di-
etary recommendations often focus on balancing protein intake
[33] and incorporating sufficient dietary fiber to enhance gut
health and reduce uremic toxin production [34,35]. Conse-
quently, both dietary carbohydrate management and dialysis
solution composition influence glucose control and require
consideration when treating diabetes in patients receiving PD
treatment.

CGM offers a significant advancement in managing blood
glucose levels in this patient population [36-38], especially
when traditional measures like HbAlc fall short [4] (Figure 1).
HbA1lc is widely recognized as a key marker for long-term gly-
cemic control, reflecting mean blood glucose levels over the
previous 2 to 3 months. However, the reliability of HbAlc di-
minishes in patients undergoing dialysis due to factors like
altered red blood cell turnover and erythropoietin therapy,
which can skew results [36,38]. Fourth-generation CGM devices
measure glucose in interstitial fluid, providing real-time data on
glucose fluctuations that HbAlc cannot capture [38]. This is
particularly relevant among the dialysis population, where
glucose levels can be unpredictably influenced by the glucose
content in peritoneal dialysates. CGM can also detect episodes of
hypoglycemia and hyperglycemia, allowing for precise and more
immediate adjustments in therapy [37]. This can enable tailored
dietary and pharmaceutical recommendations that stabilize
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blood glucose levels to enhance personalized care and treatment
outcomes.

Advanced Glycation End Products and Genetics

Advanced glycation end products (AGEs) are toxic com-
pounds formed when proteins or fats combine with sugars in the
bloodstream [39]. AGE accumulation interferes with normal cell
functions and leads to oxidative stress, inflammation, and the
progression of cardiovascular disease, diabetes, and CKD [39]. In
patients with diabetes specifically, the accumulation of AGEs
during PD can further contribute to the development and pro-
gression of diabetic complications. Different sources of AGEs can
also adversely impact treatment outcomes in this patient popu-
lation [39,40].

Endogenous AGEs are formed naturally within the body from
nonenzymatic glycation reactions between sugars and proteins.
These reactions are typically regulated by the body's metabolic
processes. However, persistent hyperglycemia in diabetes [40]
and PD treatment [41] can increase the formation and accumu-
lation of AGEs, contributing to metabolic complications. Exoge-
nous AGEs, derived from dietary sources, particularly
high-protein and high-fat foods cooked at high temperatures,
add to the AGE burden in patients with diabetes undergoing PD
(Figure 1). Since renal function is compromised in PD patients, the
ability to clear these AGE:s is reduced and levels accumulate [41].

The receptor for advanced glycation end products (RAGE) is a
cell surface receptor implicated in the pathophysiology of
various chronic diseases, such as diabetes and kidney disease,
due to its interaction with AGEs [42]. Research indicates that
genetic factors can influence individual susceptibility to AGE
toxicity [43]. These genetic differences can affect the charac-
teristics of the peritoneal membrane, which in turn can impact
glucose absorption during PD. This is important for diabetes
management in patients receiving PD, as variations in the peri-
toneal membrane directly impact glucose absorption and solute
transport. For instance, initial solute transport status, which
categorizes patients based on how quickly solutes transfer from
blood to dialysate during dialysis, is a critical factor in deter-
mining the appropriate dialysis prescription and can influence
outcomes for patients receiving PD [43]. Interestingly, poly-
morphisms in the AGER gene encoding RAGE have been found to
influence initial transport rates, with the genotype —374 TA less
likely to be associated with high initial transport compared with
the TT genotype [44]. Similarly, polymorphisms in genes
encoding for the IL-6 and the TIE2 receptor have been found to
negatively associate with high initial transport status [45]. Both
IL-6 and TIE2 receptors have been found to impact the inflam-
matory and structural properties of the peritoneal membrane.
Since initial transport status informs dialysis treatment plans and
is linked to patient outcomes—higher transport rates being
associated with poorer prognoses [43]—predicting a patient's
transport status through genetic variations in markers associated
with AGE signaling may help tailor dialysis protocols more
effectively. Moreover, utilizing patient genotypic data indepen-
dently or in combination with the gold standard peritoneal
equilibration test presents an opportunity to further enhance
treatment plans and promote beneficial health outcomes for
patients receiving PD.
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Additional genetic factors may influence AGE-related com-
plications in diabetic patients undergoing PD. Glyoxalase 1
(GLO1) acts against AGE accumulation by detoxifying precursors
[46], with polymorphisms in this gene conferring differences in
how effectively detoxification occurs [47]. AGE receptor 1
(AGE-R1), a cell surface receptor with effects counteractive to
those of RAGE [48], exhibits downregulated expression levels in
diabetic nephropathy [49], leading to reduced efficiency of AGE
clearance from the body. Further studies are needed to determine
whether genetic variations in AGE-R1 impact its protective effect
against AGEs, and whether such genetic information could guide
precision nutrition recommendations in patients undergoing PD.

Given the significant impact of AGEs on the progression of
diabetes and CKD in patients receiving PD, it is important to
consider genetic differences that could influence individual re-
sponses to treatment (Figure 1). Polymorphisms in genes like
RAGE, GLO1, and AGE-R1 provide valuable insights into inter-
individual susceptibility to AGE accumulation and clearance.
Integrating genotyping into clinical practice promises to enhance
the management of diabetic complications during PD treatment,
thereby benefiting the health of patients and their quality of life.

Metabolites and Biomarkers

Diabetic kidney disease (DKD) occurs in ~1/3 of persons with
diabetes and is more likely with prolonged hyperglycemia. It is
usually diagnosed clinically, rather than based on renal biopsy, in
patients who present with albuminuria and then declining renal
function. However, a clinical diagnosis is often made long after
significant histopathologic changes have occurred. As such, there
is an urgent need for earlier diagnostic methods, including
possibly metabolomics. Since diabetes is the major cause of
ESRD, advances in metabolomics technologies for monitoring
and predicting changes in biomarkers present in peritoneal
dialysis effluent (PDE) could also prove relevant for identifying
metabolic shifts that precede and characterize peritoneal mem-
brane dysfunction (Figure 1). A systematic review of 7 studies
[50] found that several PDE biomarkers linked to peritoneal
membrane dysfunction (including specific novel profiles of
amino acids, amines, short-chain fatty acids (SCFAs), and phos-
pholipid species) change in concentration well before the onset
of severe complications like peritoneal fibrosis and encapsulating
peritoneal sclerosis (EPS) become evident. Additionally, a tar-
geted metabolomics analysis revealed that PD fluid supple-
mented with the antioxidant alanyl-glutamine was shown to
reduce cellular stress and improve peritoneal transport status
[50,51]. Further studies investigating metabolomic signatures in
PD fluid at different stages of DKD could lead to improved peri-
toneal permeability assessments and early, noninvasive detection
of diabetic patients at risk for PD failure and EPS. Moreover,
analyzing PDE profiles could lead to optimized PD fluids and
personalized treatment plans, improving patient outcomes
overall.

Gut Microbiota and Dietary Fiber

Emerging research on the human gut microbiota suggests a
significant connection between dietary habits, the gut micro-
biome, and the pathogenesis of CKD [52]. Understanding the
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relationship between diet and gut health alongside their impact
on the effectiveness of PD treatment opens new possibilities to
develop targeted, personalized nutritional interventions aimed
at improving outcomes in this patient population (Figure 1). The
gut microbiota, encompassing a variety of microorganisms
including bacteria, viruses, archaea, and fungi, plays a pivotal
role in maintaining health. The gut microbiome is dominated by
phyla, such as Firmicutes and Bacteroidetes, which are bacteria
essential for metabolizing dietary components and synthesizing
nutrients that are critical for energy, metabolic, and immune
homeostasis [53]. Dysbiosis, or the imbalance of gut microbiota,
is linked to the progression of chronic diseases, such as obesity,
cardiovascular disease, diabetes, and CKD. In addition to ge-
netics and lifestyle, diet and medications can directly influence
the composition of the gut microbiome [52]. For example,
metformin exerts some of its blood glucose effects through its
interactions with gut bacteria such as Megamonas and Klebsiella
pneumoniae [54]. This highlights the capacity of using data ob-
tained through gut microbiota analyses to more effectively
inform and tailor dietary interventions to manage diabetes in
patients undergoing PD.

Disturbances in gut microbiome composition, a hallmark of
dysbiosis, have been implicated in the progression of CKD and
significantly increase the risk of PD failure [52]. Patients with
CKD exhibit decreased gut microbial diversity [55], and patients
with both diabetes and ESRD show shifts in microbiota compo-
sition that favor pathogenic gut bacteria [56,57]. During PD,
patients experience chronic intestinal exposure to glucose-rich
dialysate, which can serve to increase bacterial species that
thrive in uremic conditions [58], a hallmark of CKD. Some
pathogenic species of gut bacteria can also increase uremic toxin
production and absorption. However, their abundance can be
reduced through supplements of prebiotics, probiotics, post-
biotics, and dietary fiber [59,60]. Diets rich in fiber have been
shown to promote the growth of beneficial microbes, which
produce SCFAs [61]. SCFAs play a role in maintaining gut barrier
integrity and exhibit systemic anti-inflammatory effects, which
have the potential to slow the progression of CKD.

Emerging findings continue to challenge previous un-
derstandings of nutrition metabolism and specific nutrient re-
quirements. These discoveries suggest that traditional models of
nutrient metabolism may not fully capture the dynamic in-
teractions between diet, genetics, and the microbiome. A recent
study of 5 multiethnic cohorts, with nearly 10,000 participants
demonstrated that [62] tryptophan metabolites, particularly
those from the kynurenine pathway (kynurenine, kynurenate,
xanthurenate, and quinolinate), are associated with increased
diabetes risk. Conversely, indolepropionate, a gut microbial
metabolite of tryptophan, is inversely related to diabetes.
Notably, higher intakes of fiber, rather than protein or
tryptophan-rich foods, supports a favorable tryptophan metab-
olite profile, with fiber-using gut bacteria like Firmicutes [63]
playing a crucial role. A key finding involved the additional
interaction between host genetics, such as the Lactase Control
region (LC) variant affecting lactase persistence, and gut micro-
biota, where lactase nonpersistent individuals with higher milk
intake had elevated levels of Bifidobacterium and indolepropio-
nate. This crosstalk between host genes, diet, and the micro-
biome suggests a significant multiomics influence on diabetes
development, reinforcing the need to further investigate and
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incorporate gut microbial data in precision nutrition approaches
for conditions like diabetes in PD patients. Managing the vast
volume and variety of multiomics, dietary and clinical data
required for precision nutrition present significant challenges in
integrating diverse data types for clinical decision-making. Al
offers a solution by efficiently processing and analyzing complex
datasets, enabling the identification of meaningful patterns and
relationships that can guide personalized nutrition interventions
for conditions like diabetes in PD patients.

To enhance dietary interventions, advanced machine learning
(ML) techniques have demonstrated how Al can deepen our
understanding of gut microbiota-related conditions [64,65].
Specifically, Al has proven effective in predicting hyperuricemia,
a common complication in CKD, through the analysis of micro-
biota composition [66]. This showcases the capability of Al to
identify key bacterial taxa, which influence metabolic distur-
bances and aid in the tailoring of personalized dietary strategies
to reduce PD risks. Given the role of dysbiosis in the progression
of CKD and the poor outcomes associated with PD, targeted
manipulation of the gut microbiota through personalized nutri-
tional strategies aided by AI could prove important. These stra-
tegies, based on altering individual microbiota profiles to
prevent and reverse dysbiosis, might be evaluated in the man-
agement of complications and for improving outcomes in pa-
tients with diabetes receiving PD treatment.

Integration of Al and Advanced Monitoring
Technologies

In managing diabetes in PD patients, Al is increasingly
proving useful, particularly in predicting complications, opti-
mizing treatment, and improving patient outcomes. Several
studies demonstrate how Al applications enhance care for both
diabetes and dialysis patients [67,68]. For instance, ML models,
such as random forest and support vector machines, have been
utilized to predict complications like peritonitis in PD patients
and cardiovascular events in HD patients. These models
leverage patient-specific data—such as blood pressure and heart
rate variability—to predict the onset of complications early,
allowing for timely interventions [67,68]. Given the higher
cardiovascular disease risk in patients with diabetes, this pre-
dictive capability has important implications for PD patients
with coexisting diabetes. Support vector machines, random
forest, and deep neural networks have been used for predicting
diabetes outcomes [68]. In addition, convolutional neural net-
works have been effective in identifying diabetic retinopathy
from medical images [69], and natural language processing has
been employed to identify medication nonadherence and care
gaps in diabetes [70].

Al in peritoneal dialysis management

Fluid management is another area where Al is proving to be
useful. Predicting and maintaining the optimal fluid balance is
critical for dialysis patients, especially those with diabetes, as
fluid overload can exacerbate cardiovascular complications. Al
algorithms have been developed to help clinicians optimize ul-
trafiltration rates in HD and PD patients. By analyzing individual
patient data, these models can anticipate fluid overload, thus
preventing complications like heart failure [69,71]. In PD
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patients with diabetes, personalized fluid management is
particularly important due to the dual challenges of glycemic
control, use of higher concentration dextrose solutions, and fluid
retention. Al-driven tools are also being used to customize dial-
ysis prescriptions based on individual patient characteristics. For
patients undergoing PD, Al can analyze factors, such as dialysis
adequacy, residual kidney function, and diabetes management
needs, to tailor treatment regimens. This personalization helps
improve overall treatment outcomes, including glycemic control
and dialysis efficiency [69]. Moreover, mobile applications and
wearable devices equipped with AI have been used to monitor
dialysis patients remotely. For PD patients, especially those
managing diabetes, real-time tracking of vital signs and glucose
levels can alert clinicians to early signs of complications like
peritonitis or hypoglycemia. Al tools can tailor dialysis treatment
plans by analyzing patient-specific data, ensuring optimal fluid
balance, solute clearance, and glucose management, which are
critical for improving outcomes in diabetic PD patients. Such
remote monitoring tools have been instrumental in ensuring
adherence to treatment protocols and facilitating timely in-
terventions [72].

Finally, Al-driven data management platforms integrate
electronic health records with predictive models to streamline
the decision-making process for dual management of diabetes
and dialysis. These systems help clinicians make informed, data-
driven decisions in real-time, optimizing care and preventing
complications [70,71]. Al applications in diabetes management
for PD patients address key concerns such as complication pre-
diction, fluid management, personalized treatment, and
real-time monitoring. These advancements, although promising,
must overcome challenges like the integration of AI into
healthcare systems and ensuring the interpretability of Al models
for practical clinical use.

Al in glucose monitoring and diabetes management

Leveraging advanced technologies, such as CGMs in combi-
nation with AI/ML, could revolutionize personalized care for this
patient population. These technologies may enable an integra-
tive approach that combines real-time data analytics with pre-
cision medicine to tailor treatment protocols that meet the
unique needs of each patient (Figure 1). The application of
fourth-generation CGMs for real-time tracking of glucose levels
in patients with diabetes undergoing PD has been shown to
provide detailed measurements of glucose variability, mean
sensor glucose, and time within glucose ranges [38]. Access to
these additional data analytics may allow for better management
of glycemic control. CGM offers significant advantages over
traditional HbAlc testing because HbAlc cannot indicate daily
glucose variability, a common complication experienced by pa-
tients with diabetes during PD treatment due to the use of
glucose-rich dialysate [36].

Although there has been an increase in the integration of Al
and ML in diabetes care [73], the use of AI/ML is still emerging
in a clinical context. Based on the training of retrospective
datasets, AI/ML models show the potential to predict a wide
range of criteria for diagnostic and treatment purposes, including
genomic-metabolomic biomarker signatures in patients with
diabetes who are predisposed to DKD, suitable dialysis modal-
ities, PD technique failure and mortality, classification of PD
effluent metabolites, and identifying specific immune responses
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in acute peritonitis [74]. These applications highlight the po-
tential for AI/ML to help estimate risks to better facilitate the
management of PD treatment. The next step in the evolution of
AI/ML in the care of patients with diabetes receiving PD involves
strengthening these findings through clinical validation.

Al and wearables and artificial implantable kidney

In addition to advanced data analysis, the application of
various technologies to maintain patient—clinician communica-
tion is needed for enhancing guidance and self-management of
PD sessions. This is because patients must perform complex
medical procedures independently at home. The use of an Al-
driven chatbot has been shown to support this patient popula-
tion by providing immediate access to information for improved
self-care abilities and reduced infection rates [75]. Additionally,
remote patient management programs allow for automatic
transmission and monitoring of certain PD treatment data and
are considered essential for flagging interventions and ensuring
patient adherence to treatment prescription [76] (Figure 1).
Future technologies, such as wearable or implantable PD de-
vices, could also transform traditional CKD treatment [77].
Miniaturized wearable artificial kidneys based on sorbent tech-
nology to regenerate dialysate, allowing for continuous flow PD
and increased mobility for patients, could soon be approved for
clinical use [78].

Limitations

Limitations of multiomics approaches

Multiomics approaches offer significant opportunities to
enhance nutrition control in PD patients with diabetes by inte-
grating genomic, metabolomic, and microbiome data to tailor
dietary recommendations and optimize metabolic outcomes.
These approaches could help identify individual responses to
dialysis treatments and dietary interventions, allowing for more
precise control of protein-energy wasting, glycemic fluctuations,
and cardiovascular disease risk. However, the limitations of
multiomics in this setting include the high cost, complexity of
data interpretation, and the need for more standardized pro-
tocols, which hinder their widespread clinical application and
integration into routine care for PD patients. PD presents sig-
nificant challenges in managing the nutritional needs of patients,
particularly those with diabetes, due to protein loss, glucose
metabolism disturbances, and fluid imbalances, all of which
require precise and individualized dietary modifications. PD
patients, especially those with diabetes, often experience Protein
Energy Wasting due to increased protein losses in the dialysate,
which can lead to malnutrition if not properly addressed. This
necessitates a higher protein intake although simultaneously
balancing electrolyte disturbances such as hyperkalemia,
hyperphosphatemia, and sodium imbalances. In PD patients with
diabetes, the glucose content in dialysis solutions poses an
additional challenge, as it can lead to significant hyperglycemia,
further complicating glycemic control. Managing this requires
not only careful insulin adjustment but also monitoring the long-
term risk of hyperinsulinemia, which can exacerbate cardiovas-
cular complications and contribute to weight gain. Moreover,
these patients must adhere to strict fluid restrictions to prevent
volume overload, which can exacerbate hypertension and
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increase the risk of heart failure. The variability in daily glucose
absorption from the PD solution also complicates dietary plan-
ning and insulin dosing, leading to unpredictable fluctuations in
blood glucose levels. CGMs are particularly critical in this pop-
ulation, but their consistent use is often limited by the costs,
access to technology, and practical challenges in routine care. As
a result, managing glucose fluctuations induced by the glucose-
rich dialysate remains a major hurdle in achieving optimal gly-
cemic control for PD patients with diabetes, underscoring the
need for tailored dietary and medical interventions.

The clinical application of genetic polymorphisms presents
valuable opportunities for personalized medicine by enabling
tailored interventions based on an individual's genetic profile
[79], particularly in predicting disease risk and optimizing
therapeutic strategies. However, the effectiveness of these ap-
plications is constrained by the complexity of gene—-environment
interactions, where lifestyle factors, such as diet, physical ac-
tivity, and environmental exposures, modulate genetic expres-
sion, making it difficult to predict health outcomes solely from
genetic variants. Additionally, the lack of comprehensive data
across diverse populations limits the generalizability of findings,
often leading to incomplete or biased insights, and raises con-
cerns about equitable implementation of personalized medicine
across different demographic groups. This gap can hinder the
implementation of genetic testing in personalized medicine,
where individualized treatment plans rely on understanding
gene—environment interactions.

The microbiome presents a promising opportunity in the man-
agement of diabetes in PD, as it could offer novel insights into
personalized dietary interventions and metabolic regulation,
potentially improving glycemic control and reducing inflamma-
tion. Modulating the gut microbiome through probiotics or dietary
changes could help mitigate complications such as cardiovascular
disease and protein-energy wasting in this population. However,
the limitations of microbiome research in PD patients include sig-
nificant variability in microbiome composition due to factors like
dialysis method, medication use, and dietary habits, making it
difficult to establish consistent therapeutic approaches. Addition-
ally, the lack of standardized protocols and the dynamic nature of
the microbiome pose challenges for integrating microbiome-based
strategies into routine clinical practice. Incorporation of gut
microbiome data into clinical practice is similarly limited by
inconsistent methodologies and a lack of standardized protocols.
These issues make it difficult to reliably interpret microbiome data
across different patient populations. For example, variations in
sample collection techniques, storage conditions, and sequencing
technologies can lead to inconsistent results. The inter- and intra-
individual variabilities in the microbiome further complicate
establishing causality in disease processes, limiting its immediate
use in precision diagnostics or treatments. Research into
microbiome-targeted therapies, such as probiotics or fecal micro-
biota transplantation, is ongoing, but standardization is needed
before these can be widely adopted.

The application of metabolomics and biomarkers in clinical
settings faces similar challenges, particularly due to the multifac-
torial variability in metabolite levels. These levels can be influ-
enced by external factors, such as diet, physical activity,
environmental exposures, and circadian rhythms, making it diffi-
cult to achieve reproducible and interpretable results. For instance,
metabolites like glucose and insulin fluctuate throughout the day,
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whereas others, such as SCFAs produced by gut microbiota, can
vary based on dietary fiber intake. Additionally, the integration of
metabolomics into routine clinical care is hindered by high costs,
the need for specialized technical expertise, and the absence of
standardized reference ranges for many metabolites. This lack of
standardization makes it difficult to compare results across studies
or apply findings directly to patient care.

Limitations of artificial intelligence

One major challenge is data privacy and security. Al appli-
cations depend on sensitive health information, such as elec-
tronic health records and real-time data from wearable devices,
raising concerns about potential privacy breaches.

Another critical limitation is the bias and generalizability of
Al models. Al systems are trained on specific datasets, and if
these datasets are limited or nonrepresentative, the models may
fail to generalize to diverse populations, which is particularly
problematic for PD patients with comorbid conditions like dia-
betes that require specialized data from comparable cohorts. The
interpretability of many Al models, especially deep learning al-
gorithms, remains a challenge. These models often operate as
“black boxes” making it difficult for healthcare providers to
understand the rationale behind their predictions, which can
limit their practical use in clinical decision-making for complex
conditions. Moreover, integrating Al tools into existing health-
care systems poses logistical difficulties. Many healthcare in-
frastructures are not designed to accommodate Al-driven tools,
and the cost of implementation, along with the need for training
healthcare professionals, can be prohibitive.

The quality of the data used in AI models is another signifi-
cant factor. Al models rely on high-quality, structured data, but
in the case of PD patients, incomplete or inconsistent data from
electronic medical records or wearable devices can reduce the
accuracy and effectiveness of Al predictions. Finally, ethical and
regulatory challenges persist, particularly regarding biases in Al-
driven decisions, impacts on patient autonomy, and the lack of
comprehensive regulatory guidelines governing Al use in chronic
disease management, including PD and diabetes.

In conclusion, we propose that the management of diabetes in
patients receiving PD could benefit from a comprehensive, in-
tegrated approach that encompasses advanced monitoring
technologies, genetic insights, biomarkers, and precision nutri-
tional management. The leveraging of multiomics data spanning
genomics, proteomics, metabolomics, and microbiome profiles
can enable a deeper understanding of individual variation in
disease progression and treatment response. This knowledge,
combined with clinical validation of modern technological ad-
vancements, could support the development of highly tailored
treatment plans that address the specific metabolic, genetic, and
nutritional needs of each patient. Although not without signifi-
cant limitations, such an integrative approach can ultimately
lead to more effective, personalized treatments, significantly
improving the quality of life and clinical outcomes for these
patients.
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