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A B S T R A C T

Iodine deficiency (ID) poses a significant global public health challenge. This study aimed to analyze trends from 1990 to 2021 and project
future patterns �2050 using the extreme gradient boosting (XGBoost) model, with Shapley additive explanations (SHAP), to identify key
factors and inform public health strategies. Data on ID from the Global Burden of Disease (GBD) 2021 study were used to model and predict
its burden �2050 using XGBoost, with SHAP enhancing model interpretability. In 1990, global incident cases of ID were 7.51 million (age-
standardized incidence rate [ASIR]: 126.11/100,000), rising to 8.08 million by 2021 (ASIR: 105.99/100,000, a 15.96% decrease), and
projected to reach 8.48 million by 2050 (ASIR: 108.20/100,000). Prevalent cases increased from 146.42 million in 1990 (age-standardized
prevalence rate [ASPR]: 2801.80/100,000) to 180.81 million in 2021 (ASPR: 2213.98/100,000, a 20.98% decrease), with 194.51 million
expected by 2050 (ASPR: 1900.01/100,000). Disability-adjusted life years (DALYs) dropped from 2.46 million in 1990 (age-standardized
disability-adjusted life year rate [ASDR]: 46.19/100,000) to 2.25 million in 2021 (ASDR: 27.67/100,000, a 40.10% decrease) but are
projected to rise slightly to 2.51 million by 2050 (ASDR: 25.51/100,000). SHAP analysis identified iodized salt coverage as a key factor,
with higher coverage levels associated with reduced ID burden in most countries. Women and people aged 10–30 y had higher incidence
rates, although prevalence and DALYs peaked among those aged 20–45 y. Central and Eastern Sub-Saharan Africa and South Asia will
continue to bear the highest burden through 2050. The XGBoostþSHAP model identified age, sex, and iodized salt coverage as key factors,
with women and younger populations being high-risk groups. Strengthening iodization programs, improving health care access, targeted
education, and consistent monitoring of vulnerable populations are essential to mitigate future risks and improve health outcomes.
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Statements of significance

This study breaks new ground by applying the XGBoost model paired with SHAP analysis to not only precisely project iodine deficiency

trends from 1990 to 2050 but also comprehensively identify age, sex, and iodized salt coverage as key factors that have not been
comprehensively explored in this way in previous research, thus offering novel insights crucial for formulating targeted public health
strategies in the field of ID research.
Introduction

Iodine is an essential trace element, critical for numerous
bodily functions, particularly the production of thyroid hor-
mones (T4 and T3), which regulate metabolism, growth, and
development [1]. Iodine also plays a crucial role in neuro-
development, especially during fetal and early childhood stages
[2]. Beyond its role in thyroid hormone synthesis, iodine exhibits
antioxidant properties, reducing oxidative stress and supporting
immune function [3,4]. ID is most common in areas with very
low dietary iodine, particularly remote inland areas where sea-
food is not commonly consumed. Severe ID can lead to a range of
adverse health outcomes, including thyroid enlargement
(goiter), thyroid dysfunction, cognitive impairment, and, in
extreme cases, cretinism—a severe and irreversible form of
mental retardation [2,5]. ID was a considerable contributor to
the global burden of disease. In 2019, the global ASIR of ID was
108.32/100,000, with Asia alone reporting a staggering 127
million cases, 5.47 million new cases, and 1.77 million DALYs
attributed to ID [6,7]. These figures highlight the widespread
impact of ID, particularly in regions where dietary iodine re-
mains inadequate.

Accurately predicting ID trends is critical for effective public
health planning. Regions affected by severe ID often face addi-
tional challenges, such as widespread cognitive impairment and
reduced economic productivity, which underscore the urgency
of implementing evidence-based interventions. Moreover, un-
derstanding how ID may evolve over time is essential for iden-
tifying vulnerable populations and guiding strategies to mitigate
its health and societal impacts. Reliable prediction models are
needed to anticipate how ID may evolve over time, especially in
regions where dietary changes or public health interventions
could alter trends.

Traditional forecasting models, such as age-period-cohort
(APC), Bayesian age-period-cohort (BAPC), and autoregressive
integrated moving average (ARIMA), have been widely used to
model and predict disease trends. APC and BAPC models focus
on disentangling the influence of age, period, and cohort effects.
Although effective in capturing broad epidemiologic trends,
these models face significant challenges when applied to dy-
namic and nonlinear health data, such as ID. Specifically, BAPC
models rely on strong assumptions about the independence of
age, period, and cohort effects, which can lead to identifiability
issues that require the imposition of additional constraints, such
as smoothness constraints [8]. These constraints often make
BAPC models less capable of capturing abrupt changes or irreg-
ular trends that arise from external factors, such as public health
interventions or changes in dietary behavior. For example,
iodine fortification programs can lead to abrupt decreases or
even reversals in deficiency trends, which are not well-accounted
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for in these models [9]. Moreover, BAPC models are primarily
designed for retrospective analyses and may struggle with fore-
casting when external policy or environmental changes play a
significant role in shaping future trends. Similarly, ARIMA
models, commonly used in time series forecasting, perform well
in capturing linear trends based on historical data but struggle
with nonlinear patterns and complex external influences, such as
environmental changes or public health interventions. These
limitations make ARIMA less suitable for modeling the dynamic
nature of ID, where nonlinear relationships and interactions with
external variables play a critical role [10].

Machine learning models, particularly XGBoost have gained
attention due to their ability to capture complex, nonlinear re-
lationships more effectively than traditional models. However, a
challenge with machine learning models is their “black box”
nature, meaning that although they often produce highly accu-
rate predictions, understanding how they make those predictions
is not straightforward. This is where SHAP comes into play [11].
SHAP clarifies how machine learning models, like XGBoost,
generate predictions by quantifying the impact of each feature. It
assigns a value to each feature that shows how much it shifts the
prediction, making the model’s decisions easier to interpret and
providing actionable insights for decision-makers [12]. In health
research, combining XGBoost with SHAP has significantly
improved both predictive accuracy and interpretability. XGBoost
outperformed logistic regression in predicting myocardial
infarction, with SHAP explaining key factors behind predictions,
providing a clearer understanding of risk factors in a large cohort
study [13]. Similarly, XGBoost and SHAP were used to predict
central cervical lymph node metastasis in papillary thyroid car-
cinoma, identifying critical features such as capsular invasion
and radiomics scores to improve clinical decision-making [14].
XGBoost and SHAP have also been applied to global diarrheal
disease prediction, highlighting risk factors such as age older
than 60 y and inadequate access to safe water, further demon-
strating the versatility and utility of these models in health
prediction tasks [15].

In this research, we used the GBD 2021 study, which is con-
ducted by the Institute for Health Metrics and Evaluation (IHME).
As a comprehensive global initiative, GBD 2021 provides stan-
dardized estimates of disease prevalence, incidence, mortality,
and DALYs. Drawing from a wide array of data sources, including
health surveys, administrative records, and epidemiologic studies
from countries worldwide, it offers critical insights into global,
regional, and national health trends. These insights make it a key
resource for shaping public health policies and interventions [16].
By leveraging GBD 2021, we applied XGBoost combined with
SHAP to model and predict ID trends globally, regionally, and
nationally from 1990 to 2021 and projected trends from 2022 to
2050. In this study, ID was assessed using the GBD 2021
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framework, defining it through clinically significant outcomes
such as visible goiter (grade 2) and its associated sequelae. Sub-
clinical ID and mild goiter (grade 1) were excluded from this
definition. Although the GBD case definition does not stratify by
age or biochemical markers, our analysis results are presented
across different age groups to provide detailed insights into
population-level trends. The findings from this study aimed to
provide actionable insights for reducing the burden of ID through
evidence-based public health strategies.

Methods

Data source and definitions
The data for this study, which aimed to assess the global

burden of ID using key measures such as incidence, prevalence,
and DALYs, were sourced from the GBD 2021 Results Tool
(https://vizhub.healthdata.org/gbd-results/). Developed by the
GBD collaborators, this tool provides comprehensive insights
into various health conditions. ID data were extracted for the
period 1990–2021, covering 204 countries and territories across
21 GBD regions. The data set is stratified by year, sex, and broad
age groups, ranging from younger than 5 y to older than 85 y in
5-y intervals.

ID in this study followed the GBD 2021 framework [17],
defining the condition through clinical manifestations, specifically
visible goiter (grade 2) and its associated sequelae such as thyroid
dysfunction, intellectual disabilities, and heart failure. Subclinical
ID and mild goiter (grade 1) were excluded from the case defi-
nition, and the GBD framework does not incorporate biochemical
indicators such as urinary iodine concentrations. The GBD
framework does not explicitly specify whether specific sub-
populations, such as pregnant women, are included or excluded.
To align with the GBD methodology, our study adopted the same
definition and analyzed ID at a general population level.

Population estimates for 1990–2021 were derived by dividing
the number of new ID cases by the corresponding incidence rates.
Projections for population data from 2022 to 2050 were sourced
from IHME [18]. The sociodemographic index (SDI), combining
metrics such as income per capita, education levels, and fertility
rates, was also obtained from IHME for the years 1990–2021
[19]. The SDI provides a valuable framework for analyzing the
impact of socioeconomic conditions on ID, enabling a deeper
understanding of health disparities across different regions.

The iodized salt coverage data for 66 countries were sourced
from the WHO’s Nutrition Landscape Information System [20].
Iodized salt coverage is defined as the percentage of households
consuming adequately iodized salt, which is salt containing �15
parts per million. The data span from 1990 to 2021, and these 66
countries were selected because they have data at the national
level for �3 years, allowing for more reliable imputation of
missing values. In contrast, the majority of countries have fewer
than 3 y of national-level data, or no data at all, making them
unsuitable for this study’s modeling strategy. (A full list of the 66
countries included in the analysis, based on available iodized salt
coverage data for �3 y, is available in Supplemental Appendix 1.)
Data analysis
The estimated annual percentage change (EAPC) provides a

summary measure of the trend in age-standardized rates (ASRs)
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over a specified period. A positive EAPC reflects an increasing
trend, whereas a negative EAPC indicates a declining trend in the
ASRs during the analyzed period (Supplemental Appendix 2).

Original XGBoost modeling strategy
Using the GBD 2021 data set for ID from 1990 to 2021, an

XGBoost model was developed to predict incidence, prevalence,
and DALY rates for ID. The model used variables such as sex, age,
year, and the natural logarithm of the population size as input
features, with the log-transformed incidence, prevalence, or
DALY rates [logðIncidence; prevalence; or DALY rateþ1Þ] of ID as
the outputs. This transformation helped manage data skewness
and ensured proper handling of zero values. The model used for
the analysis took the following form:

log
�
Outcome Ratey;c;s;a þ 1

� � sþ aþ yþ ðlogðpnumÞÞy;c;s;a

where y stands for the calendar year; c indicates the nation or
region; s represents sex (0 for female and 1 for male); a is the
midpoint of the respective age group (e.g. 2 for <5 y, 7 for those
aged 5–9 y, …, and 87 for aged 85þ y).

In this formulation, Outcome Ratey;c;s;a corresponded to the
incidence, prevalence, or DALY rate for year y, nation or region c,
sex s, and age group a. The term ðlogðpnumÞÞy;c;s;a representing
the natural logarithm of the population size corresponding to
year y, nation or region c, sex s, and age group a, was included in
the model as an adjustment factor. This ensured that variations
in population size were accounted for, preventing population
differences from disproportionately influencing the model out-
comes. The natural logarithm transformation stabilized popula-
tion effects and allowed the model to accurately capture trends
independent of demographic shifts.

Iodized salt coverage-based XGBoost modeling strategy
To evaluate the impact of salt fortification programs, a revised

XGBoost model was developed by replacing the year variable with
iodized salt coverage. Data for iodized salt coveragewere available
for 66 countries at the national level for specific years between
1990 and 2021. However, these data had significant missing
values across time and countries. To address this, a linear model
was constructed to impute and forecast missing data:
ðiodized salt coverageÞy;c � logðyearÞ. Using this model, iodized
salt coverage was imputed for missing years from 1990 to 2021
and forested for the period 2022–2050 for these 66 countries.
Given the high correlation between year and iodized salt coverage
(r ¼ 0.9), including both variables in the model would result in
multicollinearity, which could distort the interpretation of the
predictors. To avoid this issue, we excluded the year variable and
retained only iodized salt coverage in the revised model. The
revised XGBoostmodel used the following predictors: age, sex, log-
transformed population size, and iodized salt coverage, although
the outputs remained the same log-transformed outcome rates:

log
�
Outcome Ratey;c;s;a þ 1

� � sþ aþðiodized salt coverageÞy;c
þ ½logðpnumÞ�y;c;s;a

The parameters retain the same definitions as in the original
model, with the addition of the following: ðiodized salt coverageÞy;c,
percentage of households consuming adequately iodized salt (�15
parts per million) for year y and country c.

https://vizhub.healthdata.org/gbd-results/
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Model training, validation, and performance evaluation
Both models (original and iodized salt coverage-based

XGBoost models) followed identical training, validation, and
evaluation processes. The XGBoost model used for this analysis
builds decision trees iteratively to improve prediction accuracy.
It uses an objective function comprising 2 components: a loss
function that measures prediction errors and a regularization
term that controls model complexity to prevent overfitting. The
model grows trees sequentially, adding new trees to correct the
prediction errors of the previous ones. The regularization term
penalizes overly complex models by controlling the number of
leaf nodes in each tree and the magnitude of their weights. This
ensures that the model remains robust and avoids overfitting.
(For more details on the XGBoost model used in this study, see
Supplemental Appendix 3.)

To construct the XGBoost model, the data set was randomly
divided into 70% for training and30% for testing.Hyperparameter
tuning was performed on the training set using 5-fold cross-
validation combined with a grid search approach. The evaluation
metric used during tuning was root-mean-squared error (RMSE),
which helped assess the performance of different hyperparameter
configurations. After identifying the optimal set of hyper-
parameters, thefinal XGBoostmodelwas trained and subsequently
evaluated on the test set (Supplemental Appendix 4). Model per-
formance was assessed by calculating both RMSE and Pearson
correlation coefficient to compare the predicted values against the
observed outcomes.

Following model validation, the trained XGBoost model was
used to forecast ID incidence, prevalence, and DALY rates from
2022 to 2050. To quantify uncertainty in the predictions, 500
bootstrap samples were generated, and 95% uncertainty in-
tervals (UI) were calculated based on the 2.5th and 97.5th per-
centiles of the forecasted outcomes.

To prevent overfitting during the training process, early
stopping was implemented, which monitored the model’s per-
formance on a validation set. In this case, out-of-bag data were
used, and the early stopping criterion was set to halt training if
no improvement was observed for 10 consecutive iterations. This
helped not only reduce risk of overfitting but also optimize
computational efficiency.

SHAP analysis
SHAP values were used to interpret the contributions of pre-

dictors in both models, quantifying the importance of age, sex,
population size, and iodized salt coverage (in the iodized salt
coverage-based XGBoost model) in influencing ID burden. By
calculating mean absolute SHAP values, the analysis assessed the
overall contribution of each predictor, although SHAP values
also clarified how these factors influenced model predictions.
This approach enhanced the interpretability of the model and
provided valuable insights into the key drivers of ID incidence,
prevalence, and DALYs (more details about SHAP can be found
in Supplemental Appendix 5).

APC analysis
An APC model was applied to both the observed data

(1990–2021) and the forecasted results of ID from the original
XGBoost model for the period 2022–2050. This allowed the
decomposition of the effects of age, period, and cohort on the
incidence, prevalence, and DALY rates of ID. Rate ratios (RRs)
4

were calculated to compare these rates across different periods
and birth cohorts, relative to a reference group (Supplemental
Appendix 6).

At the national level, the weighted correlations between SDI
and the ASPR, ASIR, and ASDR of ID were analyzed, using
prevalent cases, incident cases, and DALYs as weights to explore
how socioeconomic factors influence the national burden of ID.
Similarly, for the subset of 66 countries with available iodized
salt coverage data, we analyzed the weighted correlations be-
tween iodized salt coverage and the ASPR, ASIR, and ASDR of ID,
using the same weighting approach.

The APC analysis was carried out using the APC Web Tool
[21], with data preprocessing and visualization completed in R
(version 4.4.2). The XGBoost model and SHAP analysis were
implemented using the xgboost and SHAPforxgboost packages,
respectively [22,23].
Results

Model tuning and validation, and sensitivity
analysis

To determine the optimal hyperparameters and evaluate the
predictive performance of the XGBoost model, the data were
split into 70% for training and 30% for testing. A grid search was
performed on the training set to explore combinations of 3 key
hyperparameters: nrounds (number of boosting rounds), eta
(learning rate), and max_depth (maximum tree depth). The
max_depth controls the depth of each tree; deeper trees can
capture more complex patterns but may increase risk of over-
fitting. The learning rate (eta) determines how quickly the model
adapts to new patterns, influencing the convergence speed and
overall stability. The nrounds parameter defines how many
boosting iterations the model will go through, impacting both its
learning potential and the likelihood of overfitting.

A 5-fold crossvalidation was applied, using RMSE as the
performance metric to identify the best hyperparameter com-
bination. The configuration with the lowest RMSE was selected
as optimal, and this setup was then used to predict ID incidence,
prevalence, and DALY rates for the years 2022 to 2050. For the
original XGBoost model, the RMSE values on the test set, were
5.95/100,000 for incidence, 73.99/100,000 for prevalence, and
0.95/100,000 for DALYs, with Pearson correlation coefficients
between observed and predicted values being 1.00 (P < 0.001)
across all metrics, indicating excellent predictive accuracy
(Supplemental Figure 1). Similarly, for the iodized salt
coverage-based XGBoost model, the RMSE values on the test set
were 8.34/100,000 for incidence, 113.24/100,000 for preva-
lence, and 1.33/100,000 for DALYs. Pearson correlation co-
efficients for this model were also 1.00 (P < 0.001) across all
metrics (Supplemental Figure 1). Despite being comparable, the
iodized salt coverage-based model exhibited slightly higher
RMSE values for all metrics, indicating marginally lower pre-
dictive performance than the original model. Given the slightly
better overall accuracy and reliability of the original XGBoost
model, its predictions were used as the primary source for the
subsequent analyses and results presented in this study. None-
theless, the iodized salt coverage-based model provided valu-
able complementary insights into the potential impact of salt
fortification programs.



TABLE 1
Number, ASR, EAPC, and change percentage for incidence, prevalence, and DALYs of ID.

Measure Location Number in thousands (ASR, per 100,000) EAPC (%) Change of all ages number (ASR) (%)

1990 2021 2050 1990–2021 2021–2050 1990–2021 2021–2050

Incidence Global 7505.82 (126.11) 8079.84 (105.99) 8477.40 (108.20) �0.40 (�0.51 to �0.28) 0.14 (0.04 to 0.23) 7.65 (�15.96) 4.92 (2.09)
Sex
Male 3120.22 (103.24) 2940.96 (75.53) 3084.79 (76.26) �0.74 (�0.91 to �0.57) 0.12 (0.03 to 0.20) �5.75 (�26.84) 4.89 (0.97)
Female 4385.59 (149.66) 5138.88 (137.79) 5392.62 (142.08) �0.18 (�0.26 to �0.09) 0.16 (0.06 to 0.25) 17.18 (�7.93) 4.94 (3.11)

Region
Andean Latin

America
2.16 (5.33) 3.04 (4.54) 3.84 (4.49) �0.59 (�0.66 to �0.53) �0.03 (�0.03 to �0.02) 40.74 (�14.69) 26.41 (�1.17)

Australasia 2.55 (12.88) 3.40 (12.11) 3.97 (12.07) �0.21 (�0.22 to �0.20) �0.02 (�0.02 to �0.01) 33.28 (�5.98) 16.88 (�0.33)
Caribbean 13.22 (33.79) 12.50 (27.33) 10.92 (27.21) �1.03 (�1.12 to �0.93) �0.01 (�0.01 to 0.00) �5.49 (�19.11) �12.62 (�0.45)
Central Asia 21.88 (27.54) 17.56 (18.43) 19.76 (18.31) �2.05 (�2.40 to �1.69) �0.02 (�0.03 to 0.00) �19.75 (�33.07) 12.54 (�0.67)
Central Europe 18.46 (15.57) 10.73 (11.50) 7.84 (11.43) �1.16 (�1.23 to �1.09) �0.02 (�0.02 to �0.02) �41.87 (�26.16) �26.96 (�0.62)
Central Latin

America
57.04 (29.36) 71.40 (28.75) 77.11 (28.55) �0.15 (�0.24 to �0.05) �0.02 (�0.02 to �0.02) 25.18 (�2.06) 7.99 (�0.70)

Central Sub-
Saharan Africa

417.60 (578.68) 727.03 (405.20) 978.08 (365.17) �0.94 (�1.27 to �0.61) �0.38 (�0.43 to �0.32) 74.10 (�29.98) 34.53 (�9.88)

East Asia 915.37 (65.08) 791.51 (67.59) 569.23 (67.57) 0.26 (�0.14 to 0.65) �0.02 (�0.03 to �0.01) �13.53 (3.85) �28.08 (�0.03)
Eastern Europe 23.30 (11.41) 19.05 (11.55) 15.28 (11.55) �0.39 (�0.74 to �0.04) �0.01 (�0.01 to 0.00) �18.26 (1.24) �19.75 (0.01)
Eastern Sub-

Saharan Africa
533.74 (233.96) 965.56 (185.94) 1249.59 (140.76) �0.73 (�1.06 to �0.39) �0.83 (�0.95 to �0.70) 80.90 (�20.52) 29.42 (�24.30)

High-income
Asia Pacific

29.04 (17.24) 21.71 (14.51) 16.82 (14.42) �0.58 (�0.61 to �0.55) �0.02 (�0.02 to �0.02) �25.24 (�15.84) �22.49 (�0.64)

High-income
North America

36.03 (13.36) 43.84 (13.19) 45.85 (13.20) �0.03 (�0.05 to �0.01) 0.00 (0.00 to 0.00) 21.67 (�1.30) 4.59 (0.06)

North Africa
and Middle East

254.33 (61.64) 274.07 (42.30) 317.10 (40.56) �1.76 (�1.97 to �1.56) �0.07 (�0.10 to �0.04) 7.76 (�31.37) 15.70 (�4.12)

Oceania 0.51 (7.33) 0.62 (4.35) 0.96 (4.10) �1.98 (�2.24 to �1.71) �0.19 (�0.22 to �0.16) 21.75 (�40.61) 53.41 (�5.66)
South Asia 4295.48 (323.11) 4246.75 (207.06) 3580.18 (209.45) �1.24 (�1.60 to �0.88) 0.06 (0.03 to 0.09) �1.13 (�35.92) �15.70 (1.15)
Southeast Asia 393.99 (72.99) 289.47 (40.63) 287.34 (42.52) �2.03 (�2.23 to �1.83) 0.17 (0.16 to 0.19) �26.53 (�44.34) �0.74 (4.67)
Southern Latin

America
5.15 (10.14) 5.10 (8.04) 5.30 (8.08) �0.83 (�0.89 to �0.78) 0.03 (0.02 to 0.03) �1.03 (�20.66) 3.96 (0.43)

Southern Sub-
Saharan Africa

49.70 (79.27) 46.84 (54.73) 55.85 (52.60) �0.85 (�1.08 to �0.63) �0.11 (�0.13 to �0.09) �5.76 (�30.96) 19.25 (�3.90)

Tropical Latin
America

11.49 (6.96) 13.77 (6.27) 13.08 (6.26) �0.44 (�0.47 to �0.41) �0.01 (�0.01 to �0.01) 19.84 (�9.91) �5.02 (�0.20)

Western Europe 220.51 (61.87) 168.77 (49.14) 157.25 (48.84) �0.90 (�1.03 to �0.77) �0.03 (�0.03 to �0.02) �23.47 (�20.57) �6.83 (�0.61)
Western Sub-

Saharan Africa
204.27 (92.10) 347.14 (62.20) 610.44 (56.83) �1.75 (�1.91 to �1.58) �0.28 (�0.32 to �0.24) 69.94 (�32.46) 75.85 (�8.64)

Prevalence Global 146,418.05 (2801.80) 180,812.70 (2213.98) 194,507.42 (1900.01) �0.59 (�0.73 to �0.45) �0.56 (�0.59 to �0.54) 23.49 (�20.98) 7.57 (�14.18)
Sex
Male 61,215.65 (2323.28) 63,105.58 (1542.43) 66,686.17 (1298.35) �1.03 (�1.23 to �0.83) �0.59 (�0.63 to �0.55) 3.09 (�33.61) 5.67 (�15.82)
Female 85,202.40 (3287.18) 117,707.12 (2891.38) 127,821.25 (2519.03) �0.33 (�0.43 to �0.23) �0.53 (�0.56 to �0.50) 38.15 (�12.04) 8.59 (�12.88)

Region
Andean Latin

America
30.73 (90.53) 50.05 (74.59) 68.94 (72.10) �0.74 (�0.82 to �0.66) �0.13 (�0.14 to �0.13) 62.89 (�17.61) 37.74 (�3.33)

Australasia 47.11 (219.63) 69.36 (205.79) 84.31 (205.60) �0.23 (�0.24 to �0.21) �0.01 (�0.01 to �0.01) 47.22 (�6.30) 21.55 (�0.09)
Caribbean 240.92 (701.71) 264.87 (538.05) 278.14 (545.79) �1.29 (�1.42 to �1.17) 0.03 (0.03 to 0.04) 9.94 (�23.32) 5.01 (1.44)
Central Asia 415.59 (615.23) 370.29 (384.15) 464.62 (378.50) �2.41 (�2.81 to �2.00) �0.07 (�0.07 to �0.06) �10.90 (�37.56) 25.48 (�1.47)
Central Europe 386.22 (296.49) 258.49 (209.70) 201.21 (196.18) �1.32 (�1.41 to �1.23) �0.23 (�0.26 to �0.21) �33.07 (�29.27) �22.16 (�6.45)

(continued on next page)
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TABLE 1 (continued )

Measure Location Number in thousands (ASR, per 100,000) EAPC (%) Change of all ages number (ASR) (%)

1990 2021 2050 1990–2021 2021–2050 1990–2021 2021–2050

Central Latin
America

934.53 (607.13) 1604.11 (609.20) 2080.71 (598.69) �0.09 (�0.20 to 0.02) �0.04 (�0.05 to �0.03) 71.65 (0.34) 29.71 (�1.73)

Central Sub-
Saharan Africa

7841.20 (17,290.43) 14,164.39 (11,855.67) 26,065.19 (10,607.98) �0.92 (�1.30 to �0.55) �0.41 (�0.42 to �0.40) 80.64 (�31.43) 84.02 (�10.52)

East Asia 17,618.79 (1412.92) 27,548.68 (1592.36) 25,369.74 (1511.85) 0.57 (0.15 to 1.00) �0.24 (�0.25 to �0.22) 56.36 (12.70) �7.91 (�5.06)
Eastern Europe 542.44 (232.07) 516.54 (239.18) 443.42 (237.39) �0.39 (�0.77 to �0.01) �0.03 (�0.04 to �0.03) �4.77 (3.07) �14.16 (�0.75)
Eastern Sub-

Saharan Africa
9068.62 (6375.92) 16,101.72 (4614.38) 29,030.56 (3655.96) �1.04 (�1.40 to �0.67) �0.80 (�0.82 to �0.78) 77.55 (�27.63) 80.29 (�20.77)

High-income
Asia Pacific

569.05 (302.03) 524.40 (250.41) 429.57 (239.60) �0.64 (�0.67 to �0.61) �0.16 (�0.16 to �0.16) �7.85 (�17.09) �18.08 (�4.31)

High-income
North America

688.25 (230.01) 917.42 (226.54) 1012.29 (226.87) �0.04 (�0.06 to �0.02) 0.00 (0.00 to 0.00) 33.30 (�1.51) 10.34 (0.14)

North Africa
and Middle East

4545.13 (1474.46) 5364.07 (854.53) 7518.50 (801.52) �2.45 (�2.71 to �2.20) �0.18 (�0.20 to �0.16) 18.02 (�42.04) 40.16 (�6.20)

Oceania 7.24 (129.17) 9.47 (75.31) 14.29 (66.02) �2.04 (�2.31 to �1.77) �0.46 (�0.47 to �0.45) 30.89 (�41.70) 50.90 (�12.33)
South Asia 86,509.56 (8746.81) 95,152.80 (5021.98) 118,800.97 (4872.25) �1.55 (�1.92 to �1.18) �0.10 (�0.14 to �0.06) 9.99 (�42.59) 24.85 (�2.98)
Southeast Asia 6611.98 (1572.68) 5782.17 (774.12) 6933.41 (799.23) �2.46 (�2.64 to �2.28) 0.10 (0.09 to 0.11) �12.55 (�50.78) 19.91 (3.24)
Southern Latin

America
86.07 (174.18) 96.59 (135.66) 110.26 (135.69) �0.89 (�0.95 to �0.84) 0.00 (0.00 to 0.00) 12.22 (�22.11) 14.16 (0.02)

Southern Sub-
Saharan Africa

838.09 (1796.10) 852.80 (1058.40) 1173.88 (984.19) �1.29 (�1.57 to �1.02) �0.25 (�0.25 to �0.24) 1.76 (�41.07) 37.65 (�7.01)

Tropical Latin
America

169.58 (117.21) 257.77 (106.04) 287.28 (105.70) �0.42 (�0.45 to �0.39) �0.01 (�0.01 to �0.01) 52.00 (�9.53) 11.45 (�0.31)

Western Europe 5956.96 (1384.83) 5474.77 (1087.24) 5250.35 (1018.86) �0.96 (�1.10 to �0.81) �0.22 (�0.23 to �0.21) �8.09 (�21.49) �4.10 (�6.29)
Western Sub-

Saharan Africa
3309.97 (2148.65) 5431.93 (1376.82) 10,425.05 (1122.16) �1.98 (�2.16 to �1.80) �0.69 (�0.71 to �0.68) 64.11 (�35.92) 91.92 (�18.50)

DALYs Global 2455.26 (46.19) 2246.33 (27.67) 2513.98 (25.51) �1.56 (�1.66 to �1.45) �0.27 (�0.30 to �0.24) �8.51 (�40.10) 11.91 (�7.80)
Sex
Male 1072.08 (39.98) 813.99 (19.99) 888.01 (17.87) �2.04 (�2.19 to �1.89) �0.36 (�0.39 to �0.32) �24.07 (�50.01) 9.09 (�10.59)
Female 1383.18 (52.52) 1432.34 (35.43) 1625.97 (33.42) �1.25 (�1.33 to �1.17) �0.21 (�0.24 to �0.18) 3.55 (�32.54) 13.52 (�5.68)

Region
Andean Latin

America
0.69 (2.05) 0.65 (0.97) 0.90 (0.94) �3.20 (�3.71 to �2.70) �0.11 (�0.11 to �0.10) �5.59 (�52.68) 38.12 (�2.82)

Australasia 0.50 (2.34) 0.74 (2.20) 0.89 (2.20) �0.22 (�0.23 to �0.21) �0.01 (�0.01 to 0.00) 46.99 (�5.95) 21.06 (�0.03)
Caribbean 4.11 (11.86) 4.64 (9.47) 4.85 (9.58) �1.12 (�1.23 to �1.00) 0.03 (0.03 to 0.04) 13.02 (�20.12) 4.55 (1.13)
Central Asia 6.67 (9.82) 5.72 (5.94) 7.12 (5.85) �2.52 (�2.98 to �2.06) �0.07 (�0.07 to �0.06) �14.27 (�39.52) 24.48 (�1.47)
Central Europe 4.83 (3.72) 2.91 (2.38) 2.23 (2.16) �1.92 (�2.22 to �1.63) �0.38 (�0.41 to �0.35) �39.75 (�35.97) �23.36 (�9.51)
Central Latin

America
13.65 (8.80) 21.70 (8.25) 27.91 (8.09) �0.66 (�1.10 to �0.21) 0.02 (�0.02 to 0.05) 58.92 (�6.21) 28.65 (�1.94)

Central Sub-
Saharan Africa

88.19 (190.84) 165.36 (135.41) 314.77 (126.67) �0.83 (�1.21 to �0.46) �0.24 (�0.25 to �0.24) 87.51 (�29.05) 90.35 (�6.45)

East Asia 233.07 (18.59) 294.66 (17.10) 266.83 (16.25) 0.10 (�0.26 to 0.45) �0.24 (�0.25 to �0.22) 26.42 (�8.01) �9.45 (�5.00)
Eastern Europe 10.40 (4.42) 9.90 (4.56) 8.40 (4.47) �0.43 (�0.84 to �0.02) �0.07 (�0.08 to �0.07) �4.81 (3.12) �15.17 (�1.91)
Eastern Sub-

Saharan Africa
116.39 (78.32) 197.49 (54.92) 364.09 (45.29) �1.17 (�1.51 to �0.83) �0.65 (�0.67 to �0.63) 69.68 (�29.87) 84.37 (�17.54)

High-income
Asia Pacific

6.10 (3.24) 5.58 (2.69) 4.62 (2.57) �0.63 (�0.67 to �0.60) �0.18 (�0.18 to �0.17) �8.63 (�16.99) �17.25 (�4.39)

High-income
North America

7.34 (2.46) 9.67 (2.41) 10.64 (2.41) �0.05 (�0.07 to �0.03) 0.00 (0.00 to 0.00) 31.85 (�1.99) 10.05 (0.19)

(continued on next page)
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Overall burden of ID
Incidence of ID

In 1990, the global incident cases of ID were 7.51 million,
rising to 8.08 million in 2021 (a 7.65% increase from 1990) and
projected to reach 8.48 million by 2050 (a 4.92% increase from
2021). The ASIR decreased from 126.11/100,000 in 1990 to
105.99/100,000 in 2021 (a 15.96% decrease from 1990), with a
slight increase projected to 108.20/100,000 by 2050 (a 2.09%
increase from 2021). The EAPC of ASIR from 1990 to 2021 was
�0.40 (95% CI: �0.51, �0.28), whereas from 2021 to 2050, it is
expected to be 0.14 (95% CI: 0.04, 0.23) (Table 1, Figure 1A, B,
and Supplemental Table 1). Higher incidence rates are particu-
larly observed in individuals younger than 40 y, especially
within the 10–30-y age range. Across nearly all age groups, fe-
males had higher incidence rates than males (Figure 2, Supple-
mental Figures 2A–C and 3B, and Supplemental Table 2). For
1990, 2021, and 2050, the ASIR for males compared with fe-
males was 103.24/100,000 compared with 149.66/100,000,
75.53/100,000 compared with 137.79/100,000, and 76.26/
100,000 compared with 142.08/100,000, respectively (Table 1
and Supplemental Table 3).

At the regional level, Central Sub-Saharan Africa had the
highest ASIR in 1990 (578.68/100,000), followed by South Asia
(323.11/100,000) and Eastern Sub-Saharan Africa (233.96/
100,000). In 2021, Central Sub-Saharan Africa remained the
highest (405.20/100,000), with South Asia and Eastern Sub-
Saharan Africa at 207.06/100,000 and 185.94/100,000,
respectively. Projections for 2050 suggest Central Sub-Saharan
Africa will continue to lead (365.17/100,000), followed by
South Asia (209.45/100,000) and Eastern Sub-Saharan Africa
(140.76/100,000) (Table 1, Supplemental Table 3, and
Figure 3A–C). From 1990 to 2021, the highest EAPC of ASIR was
observed in East Asia (0.26%), whereas from 2021 to 2050, the
highest was projected to be in Southeast Asia (0.17%) (Table 1,
Supplemental Table 4, and Figure 4A, B).

At the national level, the highest ASIRs in 1990 were in Equa-
torial Guinea (873.69/100,000), the Democratic Republic of the
Congo (665.94/100,000), and Somalia (651.47/100,000). In 2021,
Somalia (725.59/100,000), the Democratic Republic of the Congo
(487.60/100,000), and Djibouti (474.30/100,000) topped the list.
By 2050, the highest ASIRs are projected in Somalia (699.42/
100,000), Djibouti (488.73/100,000), and the Democratic Repub-
lic of the Congo (448.53/100,000) (Table 2, Supplemental Table 3,
Figure 3A–C, and Supplemental Movie 1). From 1990 to 2021, the
largest EAPCs of ASIR were in the Philippines (1.00%), Pakistan
(0.65%), and Nepal (0.32%), whereas between 2021 and 2050,
they are expected in Comoros (0.51%), Indonesia (0.42%), and
Bhutan (0.37%) (Figure 4A, B and Supplemental Table 4).

Prevalence of ID
In 1990, the global prevalent cases of ID were 146.42 million,

increasing to 180.81 million by 2021 (a 23.49% increase from
1990) and projected to reach 194.51 million by 2050 (a 7.57%
increase from 2021). The ASPR dropped from 2801.80/100,000
in 1990 to 2213.98/100,000 in 2021 (a 20.98% decrease from
1990) and is expected to decrease further to 1900.01/100,000
by 2050 (a 14.18% decrease from 2021). The EAPC of the ASPR
from 1990 to 2021 was �0.59% (95% CI: �0.73%, �0.45%) and
from 2021 to 2050 to be �0.56% (95% CI: �0.59%, �0.54%)
(Table 1, Figure 1C, D, and Supplemental Table 1). The



FIGURE 1. Number and ASR of ID from 1990 to 2050 at the global level. (A) Incident cases; (B) ASIR; (C) prevalent cases; (D) ASPR; (E) DALYs;
(F) ASDR. ASDR, age-standardized DALY rate; ASIR, age-standardized incidence rate; ASPR, age-standardized prevalence rate; ASR, age-
standardized rate; DALY, disability-adjusted life year; ID, iodine deficiency.
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prevalence was higher among individuals aged 5 y and older,
with females exhibiting higher rates than males across nearly all
age groups. In 1990, 2021, and 2050, the ASPR for males
compared with females were 2323.28/100,000 compared with
FIGURE 2. Number and rate of ID in 1990, 2021, and 2050 at the global le
1990 (A), 2021 (B), and 2050 (C). (D–F) Prevalent case and prevalence ra
1990 (G), 2021 (H), and 2050 (I). DALY, disability-adjusted life year; ID,

8

3287.18/100,000, 1542.43/100,000 compared with 2891.38/
100,000, and 1298.35/100,000 compared with 2519.03/
100,000, respectively (Table 1, Figure 2D–F, Supplemental
Figure 2D–F, Supplemental Tables 2 and 4).
vel by gender and age groups. (A–C) Incident case and incidence rate in
te in 1990 (D), 2021 (E), and 2050 (F). (G–I) DALYs and DALY rate in
iodine deficiency.



FIGURE 3. ASR of ID at the national level in 1990, 2021, and 2050. (A–C) ASIR in 1990 (A), 2021 (B), and 2050 (C). (D–F) ASPR in 1990 (D),
2021 (E), and 2050 (F). (G–I) ASDR in 1990 (G), 2021 (H), and 2050 (I). ASDR, age-standardized DALY rate; ASIR, age-standardized incidence
rate; ASPR, age-standardized prevalence rate; ASR, age-standardized rate; DALY, disability-adjusted life year; ID, iodine deficiency.
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At the regional level, in 1990, Central Sub-Saharan Africa had
the highest ASPR (17,290.43/100,000), followed by South Asia
(8746.81/100,000) and Eastern Sub-Saharan Africa (6375.92/
100,000). By 2021, these regions still had the highest ASPRs,
with Central Sub-Saharan Africa at 11,855.67/100,000, South
Asia at 5021.98/100,000, and Eastern Sub-Saharan Africa at
4614.38/100,000. By 2050, Central Sub-Saharan Africa is pro-
jected to maintain the highest ASPR (10,607.98/100,000), fol-
lowed by South Asia (4872.25/100,000) and Eastern Sub-
FIGURE 4. EAPC in ASR of ID at the national level from 1990 to 2021 an
from 2021 to 2050 (B). (C, D) EAPC in ASPR from 1990 to 2021 (C) and fr
from 2021 to 2050 (D). ASDR, age-standardized DALY rate; ASIR, age-stan
age-standardized rate; DALY, disability-adjusted life year; EAPC, estimated
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Saharan Africa (3655.96/100,000) (Table 1, Supplemental
Table 3, and Figure 3D–F). The largest EAPC of ASPR from 1990
to 2021 was observed in East Asia (0.57%, 95% CI: 0.15%,
1.00%), whereas Southeast Asia is expected to have the highest
EAPC from 2021 to 2050 (0.10%, 95% CI: 0.09%, 0.11%)
(Table 1, Supplemental Table 4, and Figure 4C, D).

At the national level, in 1990, the countries with the highest
ASPR were Equatorial Guinea (27,675.35/100,000), the Dem-
ocratic Republic of the Congo (20,341.94/100,000), and
d from 2021 to 2050. (A, B) EAPC in ASIR from 1990 to 2021 (A) and
om 2021 to 2050 (D). (E, F) EAPC in ASDR from 1990 to 2021 (C) and
dardized incidence rate; ASPR, age-standardized prevalence rate; ASR,
annual percentage change; ID, iodine deficiency.



TABLE 2
Top 3 nations with largest ASRs of ID in 1990, 2021, and 2050.

Year ASIR (per 100,000) ASPR (per 100,000) ASDR
(per 100,000)

1990 Equatorial Guinea
(873.69)

Equatorial Guinea
(27,675.35)

Equatorial Guinea
(301.21)

Democratic
Republic of the
Congo (665.94)

Democratic
Republic of the
Congo (20,341.94)

Democratic
Republic of the
Congo (223.35)

Somalia (651.47) Somalia
(18,710.07)

Somalia (222.27)

2021 Somalia (725.59) Somalia
(20,808.11)

Somalia (241.52)

Democratic
Republic of the
Congo (487.60)

Democratic
Republic of the
Congo (14,426.07)

Democratic
Republic of the
Congo (165.16)

Djibouti (474.30) Djibouti
(13,035.45)

Djibouti (144.96)

2050 Somalia (699.42) Somalia
(20,970.08)

Somalia (241.54)

Djibouti (488.73) Democratic
Republic of the
Congo (13,563.43)

Democratic
Republic of the
Congo (159.54)

Democratic
Republic of the
Congo (448.53)

Djibouti
(13,133.61)

Djibouti (145.84)

Abbreviations: ASDR, age-standardized DALY rate; ASIR, age-
standardized incidence rate; ASPR, age-standardized prevalence rate;
ASR, age-standardized rate; DALYs, disability-adjusted life years; ID,
iodine deficiency.
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Somalia (18,710.07/100,000). By 2021, the top 3 countries
were Somalia (20,808.11/100,000), the Democratic Republic
of the Congo (14,426.07/100,000), and Djibouti (13,035.45/
100,000). Projections for 2050 indicate that Somalia
(20,970.08/100,000), the Democratic Republic of the Congo
(13,563.43/100,000), and Djibouti (13,133.61/100,000) will
continue to have the highest ASPRs (Table 2, Supplemental
Table 3, Figure 3D–F, and Supplemental Movie 2). From 1990
to 2021, the country with the largest EAPC of ASPR was the
Philippines (1.02%), whereas from 2021 to 2050, the United
Arab Emirates is expected to have the highest EAPC (0.25%)
(Figure 4C, D and Supplemental Table 4).

DALYs of ID
In 1990, the global DALYs due to ID were 2.46 million,

decreasing to 2.25 million by 2021 (an 8.51% decrease from
1990), and projected to rise to 2.51 million by 2050 (an 11.91%
increase from 2021). The ASDR dropped from 46.19/100,000 in
1990 to 27.67/100,000 in 2021 (a 40.10% decrease from 1990)
and is expected to decline further to 25.51/100,000 by 2050 (a
7.80% decrease from 2021). The corresponding EAPC of ASDR
between 1990 and 2021 was �1.56% (95% CI: �1.66%,
�1.45%), and from 2021 to 2050, the EAPC is projected to be
�0.27% (95% CI: �0.30%, �0.24%). Similar to the prevalence
distribution, higher DALY rates were observed in individuals
aged 5 y and older, with females showing higher rates thanmales
across nearly all age groups (Table 1, Figure 2G–I, Supplemental
Figure 2G–I, Supplemental Tables 2 and 4).

At the regional level, in 1990, the highest ASDRs were
recorded in Central Sub-Saharan Africa (190.84/100,000),
South Asia (158.60/100,000), and Eastern Sub-Saharan Africa
(78.32/100,000). By 2021, Central Sub-Saharan Africa (135.41/
10
100,000), South Asia (62.87/100,000), and Eastern Sub-Saharan
Africa (54.92/100,000) remained the regions with the highest
ASDRs. Projections for 2050 indicate that these regions will still
lead, with Central Sub-Saharan Africa at 126.67/100,000, South
Asia at 64.56/100,000, and Eastern Sub-Saharan Africa at
45.29/100,000 (Table 1, Supplemental Table 3, and
Figure 3G–I). The largest EAPC of ASDR between 1990 and 2021
was observed in East Asia (0.10%), whereas the region with the
highest projected EAPC between 2021 and 2050 is South Asia
(0.15%) (Table 1, Supplemental Table 4, and Figure 4E, F).

At the national level, in 1990, the highest ASDRs were found in
Equatorial Guinea (301.21/100,000), the Democratic Republic of
the Congo (223.35/100,000), and Somalia (222.27/100,000). By
2021, Somalia (241.52/100,000), the Democratic Republic of the
Congo (165.16/100,000), and Djibouti (144.96/100,000) had the
highest ASDRs. Projections for 2050 suggested that Somalia
(241.54/100,000), the Democratic Republic of the Congo
(159.54/100,000), and Djibouti (145.84/100,000) will continue
to have the highest rates (Table 2, Supplemental Table 3,
Figure 3G–I, and Supplemental Movie 3). The country with the
largest EAPC of ASDR between 1990 and 2021 was South Sudan
(0.49%), whereas from 2021 to 2050, the Lao People’s Demo-
cratic Republic is projected to have the highest EAPC (0.60%)
(Figure 4G–I and Supplemental Table 4).
APC analysis on ID incidence, prevalence, and
DALYs

The APC model was used to analyze the age, period, and
cohort effects on the incidence, prevalence, and DALYs of ID.
Age effect results showed that incidence rates increased with
age for individuals under 20, peaking in the 15–19-y age group
(275.59/100,000). After age 20 y, incidence rates generally
declined with age. Prevalence rate was highest in the 30–34-y
age group (3973.92/100,000), increasing with age till 35 y,
and then decreasing thereafter. The DALY rate peaked in the
25–29-y age group (56.22/100,000), rising rapidly before age
30 y and then declining with age (Figure 5A, D, G and Sup-
plemental Table 5).

The period effect analysis revealed that the RRs for inci-
dence, prevalence, and DALYs were highest during 1990–1994
compared with the reference group (2015–2019), with RRs of
1.18 (95% CI: 1.11, 1.24), 1.25 (95% CI: 1.22, 1.28), and 1.57
(95% CI: 1.53, 1.61), respectively (Supplemental Table 6,
Figure 5B, E, H).

Birth cohort effect analysis revealed little variation in inci-
dence cohort RR. Prevalence cohort RR remained stable before
2000, then showed a general decline after 2000. The DALYs
cohort RR peaked for the 1905 cohort 1.48 (95% CI: 0.93, 2.35)
and showed an overall downward trend thereafter (Supple-
mental Table 7, Figure 5C, F, I).
SHAP analysis on the variables influencing ID
incidence, prevalence, and DALY rates

SHAP values quantify the contribution of each feature to a
model’s prediction, where the magnitude reflects the importance
of the feature and the sign indicates the direction of its influence.
A positive SHAP value suggests the feature increases the predicted
outcome, whereas a negative value suggests it decreases the
outcome. Mean absolute SHAP value is used to assess the overall



FIGURE 5. Age, period, and birth cohort effects for global ID incidence, prevalence, and DALY rate. (A–C) The age (A), period (B), and cohort (C)
effects of incidence rate. (D–F) The age (D), period (E), and cohort (F) effects of prevalence rate. (G–I) The age (G), period (H), and cohort (I)
effects of DALY rate. DALY, disability-adjusted life year; ID, iodine deficiency.

D. Liang et al. Advances in Nutrition 16 (2025) 100384
importance of variables by capturing both positive and negative
impacts.

SHAP analysis from the original XGBoost model
In the original XGBoost model, age, gender, and year were

identified as the most influential factors on incidence, preva-
lence, and DALYs. The SHAP analysis showed that the impact of
age, gender, and year on incidence, prevalence, and DALYs fol-
lowed distinct patterns. Before age 20 y, age was generally
positively correlated with incidence, but this correlation turned
negative after 20 y. For prevalence and DALYs, the pattern was
similar: before age 30 y, age was positively correlated, whereas
after 30 y, the correlation became negative. SHAP values for
gender indicated that females are at higher risk of incidence,
prevalence, and DALYs than males. Year also showed a similar
trend across all metrics: from 1990 to 2015, it was generally
negatively correlated with incidence, prevalence, and DALYs,
and the impact stabilized after 2015 (Figures 6–8).

When analyzing specific countries in 2021, the Democratic
Republic of the Congo, Djibouti, and Somalia had the highest
ASIRs, ASPRs, and ASDRs. SHAP analysis of incidence, preva-
lence, and DALYs in these countries showed similar patterns for
age and year. For instance, in Djibouti and Somalia, age was
positively correlated with incidence before age 20 y and
11
negatively correlated afterward, whereas in the Democratic Re-
public of the Congo, this shift occurred around age 15 y. The
impact of age on prevalence and DALYs was consistent across
these countries, with positive correlations before age 30–35 y
and negative correlations afterward (Supplemental
Figures 4–12).

SHAP results from the iodized salt coverage-based XGBoost
model

In the iodized salt coverage-based model, iodized salt coverage
emerged as a critical predictor influencing ID burden across
incidence, prevalence, and DALYs. The SHAP analysis revealed a
distinct nonlinear relationship between iodized salt coverage and
ID burden in most countries with available data. Specifically,
when iodized salt coverage reaches a certain threshold, further
increases are generally associated with a decline in incidence,
prevalence, and DALY rates. However, the specific threshold
varies across countries, reflecting regional differences in the
impact of salt fortification programs. For example, among the 66
countries with available iodized salt coverage data, the 3 countries
with the highest ASPRs in 2021 (Congo, Democratic Republic of
the Congo, and Ethiopia) exhibited varying iodized salt coverage
thresholds. In Congo, incidence, prevalence, and DALY rates
began to decline significantly once iodized salt coverage exceeded



FIGURE 6. SHAP summary plot and dependence plots for features in the original XGBoost model predicting the ID incidence rate. (A) Summary
plot. (B–E) The dependence plot showing the contribution of age (B), gender (C), year (D), and log (population) (E). ID, iodine deficiency; SHAP,
Shapley additive explanations.
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87%. In the Democratic Republic of the Congo, this threshold was
slightly lower at 77%, whereas in Ethiopia, reductions in all 3
metrics were observed only after iodized salt coverage surpassed
50% (Supplemental Figure 13). These patterns indicated that
adequate iodized salt coverage is a critical factor in reducing ID
burden, but the effective coverage threshold varies by country.
This underscores the importance of tailoring salt fortification
programs to regional needs and ensuring sufficient coverage to
achieve maximum health benefits.

Overall, SHAP values quantified the significant contribution
of iodized salt coverage to reducing ID burden, alongside tradi-
tional predictors like age and sex. This analysis provided valu-
able insights into how scaling up salt iodization programs could
impact ID burden in countries with available data, emphasizing
its role as a critical intervention for public health improvement
(Supplemental Figure 13).
SDI and iodized salt coverage compared with ASRs
of ID

SDI correlated negatively with ASIR, ASPR, and ASDR. The
weighted correlation coefficients in 1990 were �0.64 (P < 0.01)
for ASIR, �0.63 (P < 0.01) for ASPR, and �0.58 (P < 0.01) for
ASDR. In 2021, the weighted correlation coefficients between
SDI and ASIR, ASPR, and ASDR were �0.76 (P< 0.01), �0.78 (P
12
< 0.01), and �0.77 (P < 0.01), respectively (Figure 9). These
results suggested that higher socioeconomic development is
associated with lower ASRs of ID burden.

For the 66 countries with available iodized salt coverage data,
iodized salt coverage was also negatively correlated with ASIR,
ASPR, and ASDR. In 1990, the weighted correlation coefficients
were �0.49 (P < 0.01) for ASIR, �0.47 (P < 0.01) for ASPR, and
�0.44 (P < 0.01) for ASDR. By 2021, these correlations weak-
ened substantially, with coefficients of �0.04 (P ¼ 0.741) for
ASIR, �0.13 (P ¼ 0.307) for ASPR, and �0.07 (P ¼ 0.562) for
ASDR (Supplemental Figure 14).
Discussion

This study provided a detailed analysis of global and regional
trends in ID using GBD 2021 data and predictive modeling with
XGBoost and SHAP. The results from 1990 to 2021 showed a
general decline in ID, but regions like Central Sub-Saharan Af-
rica, South Asia, and Eastern Sub-Saharan Africa continue to
experience high burdens, particularly among females and
younger age groups. The prediction for 2022 to 2050 indicated
that although the global ASIR, ASPR, and ASDR are expected to
stabilize or slightly decrease, these 3 regions will continue to face
significant challenges. Central Sub-Saharan Africa, South Asia,



FIGURE 7. SHAP summary plot and dependence plots for features in the original XGBoost model predicting the ID prevalence rate. (A) Summary
plot. (B–E) The dependence plot showing the contribution of age (B), gender (C), year (D), and log (population) (E). ID, iodine deficiency; SHAP,
Shapley additive explanations.
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and Eastern Sub-Saharan Africa are projected to maintain the
highest ASIR, ASPR, and ASDR of ID.

SHAP analysis highlighted age, sex, year, and iodized salt
coverage as key factors influencing ID trends. Age showed a
complex, shifting impact: for incidence, age correlated positively
before 20 y and negatively correlated after. For prevalence and
DALYs, age correlated positively until 30–35 y, after which the
correlation turned negative. Gender analysis consistently showed
higher risks for females in all metrics, although year showed a
general negative correlation with ID from 1990 to 2015, with the
effect stabilizing after 2015. Reductions in ID burden were
generally observed only after achieving region-specific coverage
thresholds, highlighting the need for tailored fortification strate-
gies to address regional disparities.

These projections underscore the ongoing burden of ID in
these vulnerable regions through 2050, emphasizing the need for
sustained public health interventions. The use of XGBoost with
SHAP enhances both the accuracy and interpretability of pre-
dictions, offering valuable insights for guiding future prevention
strategies.

This study analyzed the global burden of ID and found sig-
nificant variation across regions and over time. When inter-
preting the results, it is important to note the differences in ASIR
estimates between the GBD 2021 and GBD 2019 studies. For
instance, the 2019 ASIR of ID reported by GBD 2021 was 106.33
13
per 100,000, whereas the 2019 ASIR from GBD 2019 was 108.32
per 100,000. These 2 estimates are very close, reflecting a high
degree of consistency between the 2 iterations. The small dif-
ference is primarily attributable to updates in the standard
population structure used for age-standardization in GBD 2021,
which reflects changes in global demographic trends. Impor-
tantly, the data sources and modeling strategies used to estimate
the ASIR for 2019 were consistent between GBD 2019 and GBD
2021 [17,24]. Therefore, the observed differences in ASIR esti-
mates are solely due to the revised standardization approach.

This highlights the need for careful consideration of adjust-
ments in age-standardization when comparing results across
GBD iterations. Although these updates improve the compara-
bility and representativeness of the estimates, they may intro-
duce slight differences when comparing metrics like ASIR
between iterations. Such nuances are critical to ensuring an ac-
curate interpretation of findings, particularly in studies
analyzing trends over time.

The reliance on clinical outcomes, particularly visible goiter
(grade 2), in the GBD framework provides a robust basis for
assessing ID’s measurable health burden. However, the case
definition does not incorporate stratification by age or biochem-
ical markers, such as urinary iodine concentrations, which are
often used in public health to identify subclinical ID. This limits
the framework’s ability to capture early stages of deficiency or



FIGURE 8. SHAP summary plot and dependence plots for features in the original XGBoost model predicting the ID DALY rate. (A) Summary plot.
(B–E) The dependence plot showing the contribution of age (B), gender (C), year (D), and log (population) (E). DALY, disability-adjusted life year;
ID, iodine deficiency; SHAP, Shapley additive explanations.
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mild cases. Our study stratified results by age to provide a more
granular understanding of ID trends. However, the GBD meth-
odology itself does not explicitly support such stratification at the
case definition level. Future research should aim to refine defi-
nitions and include biochemical and demographic stratifications
to better capture the full spectrum of ID.
Gender and age distribution in ID
The distribution of ID varies significantly across gender and

age groups, influenced by physiologic demands, autoimmune
tendencies, and the long-term effects of deficiency. Globally,
women are disproportionately affected by ID, particularly during
their reproductive years, due to increased iodine requirements
during pregnancy and lactation. During pregnancy, iodine is
critical for the production of thyroid hormones needed for both
fetal neurodevelopment and maternal metabolism. Insufficient
iodine intake during this period not only increases risk of
maternal hypothyroidism and goiter but also leads to adverse
fetal outcomes such as cretinism, impaired growth, and reduced
cognitive abilities in children [25]. These findings align with
global evidence, where iodine supplementation in pregnancy has
been shown to significantly reduce such risks [26]. Furthermore,
lactation increases iodine demands, further exacerbating the
deficiency in regions with marginal iodine intake [27].
14
Women continue to exhibit a higher prevalence of ID-related
diseases than men throughout their lives. Beyond reproductive
years, women face sustained thyroid hormone demands due to
chronic thyroid conditions, such as goiter or hypothyroidism,
which may have developed during their reproductive years.
These conditions can persist and worsen in the absence of
adequate iodine intake, contributing to long-term health burdens
[28]. Women are also more prone to autoimmune thyroid dis-
eases, such as Hashimoto thyroiditis and Graves disease, which
are exacerbated in iodine-deficient environments, increasing the
burden of thyroid dysfunction [29]. Notably, even in
iodine-sufficient regions, women exhibit higher rates of thyroid
autoimmunity than men, likely due to hormonal influences, such
as fluctuations in estrogen levels, and genetic predisposition
[30]. These combined factors—higher iodine demands during
key life stages such as pregnancy, lactation, and menopause,
alongside a heightened susceptibility to thyroid autoimmunity
and the long-term effects of chronic thyroid dysfunc-
tion—underscore the chronic vulnerability of women to ID and
its associated complications. Addressing these unique challenges
requires targeted public health interventions, including the
implementation of iodine supplementation programs, improved
access to iodized salt, and regular monitoring of iodine status,
particularly in regions with insufficient or marginal iodine
intake. These strategies are essential to mitigating the
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multifaceted burden of ID and improving health outcomes for
women across their lifespan.

Younger populations, particularly those aged 10–30 y, show
higher incidence due to increased thyroid hormone needs during
growth and development. ID becomes more apparent after 5 y,
with prevalence and DALYs peaking around 20–45 y. This is
largely due to the cumulative effects of early ID, which can lead
to chronic conditions such as goiter or hypothyroidism that
persist throughout adulthood. Although the incidence of new ID
cases tends to decline after 30 y, these chronic conditions
continue to drive high prevalence and DALYs [31].

After age 35 or 40 y, ID prevalence and DALYs remain
elevated, largely due to the chronic nature of thyroid disorders
that develop earlier in life. Conditions such as goiter, hypothy-
roidism, and thyroid nodules, once established, often become
FIGURE 9. Weighted correlation analysis between the SDI and ID ASIR, A
with incident case, prevalent case, and DALYs as weights. (A, B) ASIR in 1
ASDR in 1990 (E) and 2021 (F). ASDR, age-standardized DALY rate; ASIR
rate; ASR, age-standardized rate; DALYs, disability-adjusted life year; ID, i
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permanent even if iodine intake improves later. These thyroid
conditions can result in persistent morbidity, maintaining high
levels of prevalence and DALYs in older age groups. Moreover, as
individuals age, the thyroid gland’s ability to adapt to ID di-
minishes, leading to increased risk of complications. Additionally,
older adults, particularly women, are at greater risk of autoim-
mune thyroid diseases such as Hashimoto thyroiditis, which
further increases the disease burden in this age group [32].

To address these persistent patterns, targeted public health
interventions are essential. Ensuring adequate iodine intake,
particularly in women of childbearing age, children, and ado-
lescents, should be a priority. Regular monitoring and iodine
supplementation programs can help mitigate the long-term im-
pacts of deficiency. Additionally, sustained iodine fortification
efforts are crucial to reduce the prevalence of ID across all age
SPR, and ASDR at global and regional levels in 1990, 2021, and 2050,
990 (A) and 2021 (B); (C, D) ASPR in 1990 (C) and 2021 (D); (E, F)
, age-standardized incidence rate; ASPR, age-standardized prevalence
odine deficiency; SDI, sociodemographic index.
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groups, particularly in regions where the condition remains
prevalent.

SDI and ID in high-burden regions
The SDI is closely linked to the persistence of ID in regions

like Central Sub-Saharan Africa, South Asia, and Eastern Sub-
Saharan Africa, which experience the highest burdens. These
regions, characterized by low SDI, are affected by poor socio-
economic conditions, limited education, and inadequate health
care, all of which hinder efforts to address ID.

In Central and Eastern Sub-Saharan Africa, ID is driven by
poor access to iodized salt and limited dietary diversity. Rural
populations, in particular, rely on noniodized salt, and the
infrastructure to support consistent iodization remains weak. As
a result, conditions like goiter are common, especially among
women and children, and low education and income levels
further reduce the adoption of iodized salt [33].

In South Asia, despite efforts to implement universal salt
iodization, coverage remains inconsistent due to political and
logistical challenges. Large rural populations, combined with
widespread poverty and malnutrition, particularly among
women and children, exacerbate ID. This deficiency contributes
to developmental delays and cognitive impairment, especially
in areas with low SDI where public health interventions are
uneven [34].

The low SDI in these regions correlates with poor awareness
and access to iodized salt. Households with lower education and
income are less likely to use iodized salt, perpetuating ID across
generations [35].

Addressing ID in these regions will require expanding access
to iodized salt, improving public education, and tackling broader
socioeconomic challenges. These efforts can help reduce the
burden of ID and its long-term health impacts on vulnerable
populations.

Feasibility and reliability of SHAP in analyzing ID
The use of SHAP in analyzing ID trends demonstrate strong

feasibility, particularly given its consistency with findings from
the APC model. Both SHAP and APC demonstrate similar pat-
terns regarding age-related effects on incidence, prevalence, and
DALYs, with incidence positively correlated with age before 20 y
and declining thereafter. This consistency reinforces SHAP’s
reliability in identifying key factors influencing ID, further con-
firming its suitability for use in health data analysis.

SHAP’s interpretability adds to its practicality, especially in
public health decision-making. Unlike traditional machine
learning models, which often act as black boxes, SHAP clearly
explains the contributions of each factor, such as age, gender, or
year to health outcomes. This feature makes SHAP particularly
useful for public health professionals to identify high-risk groups
and implement targeted interventions. For example, SHAP has
been successfully used in other health studies to explain complex
interactions, as shown in the work by Orsini et al. [36], where
SHAP effectively revealed interaction effects between dietary
and lifestyle factors on mortality outcomes. Such interpretability
is key to its feasibility in health research.

SHAP’s feasibility can be further enhanced by integrating
additional data sources, such as socioeconomic conditions,
health care access, and environmental factors. Incorporating
these variables would provide a more comprehensive
16
understanding of ID’s underlying causes, particularly in regions
where access to iodized salt or health care infrastructure is
limited.

In summary, SHAP is a highly feasible tool for analyzing ID
trends. Its interpretability and potential for integrating broader
data make it a valuable resource for designing targeted public
health interventions and addressing the multifaceted drivers of ID.
Strengths and challenges of the XGBoostþSHAP
model

The XGBoostþSHAP model applied in this study demon-
strates several strengths. It offers high predictive accuracy, suc-
cessfully forecasting ID trends across incidence, prevalence, and
DALYs. This capability is vital for public health planning,
particularly in regions like Central Sub-Saharan Africa and South
Asia, where ID is still a major concern. Additionally, SHAP im-
proves interpretability by clearly showing how variables such as
age, gender, and year impact ID outcomes. This level of trans-
parency is essential for identifying high-risk groups and shaping
targeted interventions.

However, the model also faces several challenges. A major
limitation is its narrow feature set, which includes only age,
gender, year, and population size. This restricts the model’s
ability to capture other important factors, such as dietary habits,
health care access, and environmental influences, which can play
a critical role in shaping ID trends. The model’s generalizability
might also be constrained by these limitations. Although it per-
forms well in broader analyses, its accuracy may decrease in
regions with unique local factors that are not fully accounted for
by the current input variables. Consequently, predictions in some
areas may lack precision, especially where ID is influenced by
factors beyond the scope of the model’s inputs. To address these
challenges, expanding the feature set to include a broader range
of data—such as socioeconomic or health care factors—could
further enhance the model’s accuracy and applicability across
different regions.
Conclusions

This study provides a detailed analysis of global ID trends
from 1990 to 2021, with projections through 2050. The use of
the XGBoostþSHAP model effectively identified key factors such
as age, gender, and year, offering accurate and interpretable
predictions that are crucial for understanding regional and de-
mographic disparities in ID. Although the model performs well,
future enhancements could incorporate additional variables,
such as socioeconomic factors, to improve its applicability in
regions with unique local conditions. Despite global progress in
reducing ID, regions like Central Sub-Saharan Africa, South Asia,
and Eastern Sub-Saharan Africa remain heavily affected, partic-
ularly among women and younger populations. This underscores
the need for continued, targeted public health interventions.

To address these challenges, expanding universal salt iod-
ization programs should be a priority. Strengthening supply
chains, ensuring access to iodized salt in rural and underserved
regions, and enhancing quality control measures are critical.
Public health campaigns should focus on educating women of
reproductive age about the importance of iodine. In regions
where iodized salt is insufficient, supplementation programs are
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essential. Routine monitoring of iodine levels in high-risk
groups, particularly pregnant women and children, should be
integrated into national health strategies. With coordinated in-
ternational efforts, these measures can help mitigate the long-
term health impacts of ID and improve outcomes for vulner-
able populations.
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